Efficient Epoxidation of Alkenes using New Organometallic Catalysts ((E)-2,6-dimethoxy-4-((2-(5-methyl-1,3,4-thiadiazol-2-yl)hydrazono)methyl)phenol M: Cr, Fe, Co, Cu): An Antimicrobial and Theoretical Study of Catalyst
Subject Areas : Iranian Journal of CatalysisRasha Mahmood 1 , Mohammed Abowd 2 , Asmaa Sabti 3
1 - Department of Chemistry, College of Science, University of Misan, Maysan, Iraq
2 - Department of Chemistry, College of Science, University of Thi-Qar, Thi-Qar, Iraq
3 - Department of Chemistry, College of Science, University of Misan, Maysan, Iraq
Keywords:
Abstract :
[1] K.C. Gupta, A.K. Sutar, Catalytic activities of Schiff base transition metal complexes, Coord. Chem. Rev., 252 (2008) 1420-1450.
[2] K. Kar, D. Ghosh, B. Kabi, A. Chandra, A concise review on cobalt Schiff base complexes as anticancer agents, Polyhedron, (2022) 115890.
[3] H. Kargar, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, H.A. Rudbari, A.A. Ardakani, S. Sedighi-Khavidak, K.S. Munawar, M. Ashfaq, M.N. Tahir, Synthesis, spectral characterization, crystal structures, biological activities, theoretical calculations and substitution effect of salicylidene ligand on the nature of mono and dinuclear Zn (II) Schiff base complexes, Polyhedron, 213 (2022) 115636.
[4] A.S. Al-Wasidi, I.I.S. AlZahrani, H.I. Thawibaraka, A.M. Naglah, Facile synthesis of ZnO and Co3O4 nanoparticles by thermal decomposition of novel Schiff base complexes: Studying biological and catalytic properties, Arabian Journal of Chemistry, 15 (2022) 103628.
[5] A. Kumar, V. Bhakuni, Enantioselective epoxidation using liposomised m-chloro-perbenzoic acid (LIP MCPBA), Tetrahedron Lett., 37 (1996) 4751-4754.
[6] D.N. Platonov, G.P. Okonnishnikova, R.A. Novikov, K.Y. Suponitsky, Y.V. Tomilov, A novel and unusual reaction of 1,2,3,4,5,6,7-hepta(methoxycarbonyl)-cyclohepta-2,4,6-trien-1-yl potassium with organic azides, Tetrahedron Lett., 55 (2014) 2381-2384.
[7] T. Maharana, N. Nath, H.C. Pradhan, S. Mantri, A. Routaray, A.K. Sutar, Polymer-supported first-row transition metal schiff base complexes: Efficient catalysts for epoxidation of alkenes, React. Funct. Polym., 171 (2022) 105142.
[8] M. Samani, M.H. Ardakani, M. Sabet, Efficient and selective oxidation of hydrocarbons with tert-butyl hydroperoxide catalyzed by oxidovanadium(IV) unsymmetrical Schiff base complex supported on γ-Fe2O3 magnetic nanoparticles, Res. Chem. Intermed., 48 (2022) 1481-1494.
[9] J. Rakhtshah, A comprehensive review on the synthesis, characterization, and catalytic application of transition-metal Schiff-base complexes immobilized on magnetic Fe3O4 nanoparticles, Coord. Chem. Rev., 467 (2022) 214614.
[10] M. Payam, H. Kargar, M. Fallah-Mehrjardi, Silica-coated nanomagnetite-supported oxovanadium(V) Schiff base complex: Preparation, characterization, and catalytic application for the oxidation of sulfides, Inorg. Chem. Commun., 145 (2022) 109951.
[11] M. Bashir, M. Saifullah, M. Riaz, M. Arshad, A. Irfan, S. Iqbal, Z.H. Farooqi, R. Begum, Schiff bases derived from phloroglucinol carbonyl variants and their applications-A review, Inorg. Chem. Commun., 152 (2023) 110690.
[12] H. Kargar, M. Moghadam, L. Shariati, N. Feizi, M. Fallah-Mehrjardi, R. Behjatmanesh-Ardakani, K.S. Munawar, Synthesis, crystal structure, spectral characterization, theoretical studies, and investigation of catalytic activity in selective oxidation of sulfides by oxo-peroxo tungsten(VI) Schiff base complex, J. Mol. Struct., 1257 (2022) 132608.
[13] C. Boulechfar, H. Ferkous, A. Delimi, A. Djedouani, A. Kahlouche, A. Boublia, A.S. Darwish, T. Lemaoui, R. Verma, Y. Benguerba, Schiff bases and their metal complexes: a review on the history, synthesis, and applications, Inorg. Chem. Commun., (2023) 110451.
[14] T. Ashraf, B. Ali, H. Qayyum, M.S. Haroone, G. Shabbir, Pharmacological aspects of schiff base metal complexes: A critical review, Inorg. Chem. Commun., (2023) 110449.
[15] M. Zabiszak, J. Frymark, K. Ogawa, M. Skrobańska, M. Nowak, R. Jastrzab, M.T. Kaczmarek, Complexes of β-lactam antibiotics and their Schiff-base derivatives as a weapon in the fight against bacterial resistance, Coord. Chem. Rev., 493 (2023) 215326.
[16] K. Mondal, S. Mistri, Schiff base based metal complexes: A review of their catalytic activity on aldol and henry reaction, Comments Inorg. Chem., 43 (2023) 77-105.
[17] L.H. Abdel-Rahman, A.A. Abdelghani, A.A. AlObaid, D.A. El-ezz, I. Warad, M.R. Shehata, E.M. Abdalla, Novel Bromo and methoxy substituted Schiff base complexes of Mn (II), Fe (III), and Cr (III) for anticancer, antimicrobial, docking, and ADMET studies, Sci. Rep., 13 (2023) 3199.
[18] Y.-L. Dong, H.-R. Liu, S.-M. Wang, G.-W. Guan, Q.-Y. Yang, Immobilizing Isatin-Schiff Base Complexes in NH2-UiO-66 for Highly Photocatalytic CO2 Reduction, ACS Catal., 13 (2023) 2547-2554.
[19] C. Gautam, D. Srivastava, G. Kociok-Köhn, S.W. Gosavi, V.K. Sharma, R. Chauhan, D.J. Late, A. Kumar, M. Muddassir, Copper (ii) and cobalt (iii) Schiff base complexes with hydroxy anchors as sensitizers in dye-sensitized solar cells (DSSCs), RSC Adv., 13 (2023) 9046-9054.
[20] A.S. Mohammed, J.M. Alyass, K.I. Khallow, Synthesis and Characterization of Hybrid Dual Metallic Complexes of Schiff Base Containing (Cd and Mn/Fe/Co/Ni) Derived from Isatin and 1,4-Phenylenediamine As Novel Organometallic Catalysts for Rapid and Efficient Epoxidation of Alkenes, Iran. J. Catal., 12 (2022) 223-235.
[21] H. Zakeri, S. Rayati, G. Zarei, A. Parsa, F. Adhami, Mn(II)-Schiff base complex immobilized onto MCM-41 matrix as a heterogeneous catalyst for epoxidation of alkenes, Iran. J. Catal., 10 (2020) 71-78.
[22] M. Tayebani, B. Shafaat, M. Iravani, Hydrogen peroxide oxidation of primary alcohols by thiosemicarbazide Schiff base metal complexes, Iran. J. Catal., 5 (2015) 213-221.
[23] I.R. Parrey, A.A. Hashmi, B.L. Swami, S.A. AL-Thabaiti, Synthesis, characterisation and catalytic activity of Schiff base Cu(II) metal complex, Iran. J. Catal., 5 (2015) 89-95.
[24] M.K. Chug, E.J. Brisbois, Recent Developments in Multifunctional Antimicrobial Surfaces and Applications toward Advanced Nitric Oxide-Based Biomaterials, ACS Materials Au, 2 (2022) 525-551.
[25] Q. Xu, K.-S. Huang, Y.-F. Wang, H.-H. Wang, B.-D. Cui, W.-Y. Han, Y.-Z. Chen, N.-W. Wan, Stereodivergent Synthesis of Epoxides and Oxazolidinones via the Halohydrin Dehalogenase-Catalyzed Desymmetrization Strategy, ACS Catal., 12 (2022) 6285-6293.
[26] R. Ma, X. Hua, C.-L. He, H.-H. Wang, Z.-X. Wang, B.-D. Cui, W.-Y. Han, Y.-Z. Chen, N.-W. Wan, Biocatalytic Thionation of Epoxides for Enantioselective Synthesis of Thiiranes, Angew. Chem. Int. Ed., 61 (2022) e202212589.
[27] G. An, C.a. Wang, H. Gao, G. Wang, Y. Luo, Z. Liu, C. Xia, S. Liu, X. Peng, Z. Cheng, X. Shu, A novel MOFs-induced strategy for preparing anatase-free hierarchical TS-1 zeolite:synthesis routes, growth mechanisms and enhanced catalytic performance, J. Colloid Interface Sci., 633 (2023) 291-302.
[28] S. Singh, D.B. Singh, B. Gautam, A. Singh, N. Yadav, Chapter 19 - Pharmacokinetics and pharmacodynamics analysis of drug candidates, in: D.B. Singh, R.K. Pathak (Eds.) Bioinformatics, Academic Press2022, pp. 305-316.
[29] M.S.S. Adam, S. Shaaban, N.M. El-Metwaly, Two ionic oxo-vanadate and dioxo-molybdate complexes of dinitro-aroylhydrazone derivative: Effective catalysts for epoxidation reactions, biological activity, ctDNA binding, density functional theory, and in silico investigations, Appl. Organomet. Chem., 36 (2022) e6763.
[30] B.N. Patra, P. Ghosh, N. Sepay, S. Gayen, S. Koner, P. Brandao, Z. Lin, R. Debnath, J.L. Pratihar, T. Maity, D. Mal, Aerobic epoxidation of olefins by carboxylate ligand-based cobalt (II) compound: synthesis, X-ray crystallography, and catalytic exploration, Appl. Organomet. Chem., 36 (2022) e6552.
[31] S. Verma, A. Joshi, S.R. De, J.L. Jat, Methyltrioxorhenium (MTO) catalysis in the epoxidation of alkenes: a synthetic overview, New J. Chem., 46 (2022) 2005-2027.
[32] M. Li, L. Ma, L. Luo, Y. Liu, M. Xu, H. Zhou, Y. Wang, Z. Li, X. Kong, H. Duan, Efficient photocatalytic epoxidation of styrene over a quantum-sized SnO2 on carbon nitride as a heterostructured catalyst, Applied Catalysis B: Environmental, 309 (2022) 121268.
[33] Y. Wu, Z. Chen, Y. Wang, J. Xu, Kinetic Studies and Reaction Network in the Epoxidation of Styrene Catalyzed by the Temperature-Controlled Phase-Transfer Catalyst [(C18H37)2(CH3)2N]7[PW11O39], Indust. Eng. Chem. Res., 61 (2022) 10747-10755.
[34] R.A. Bepari, P. Bharali, B.K. Das, Synthesis of nanoscale CuO via precursor method and its application in the catalytic epoxidation of styrene, RSC Adv., 12 (2022) 6044-6053.
[35] S. Chatterjee, S. Das, P. Bhanja, E. E. S, R. Thapa, S. Ruidas, S. Chongdar, S. Ray, A. Bhaumik, Ag nanoparticles immobilized over highly porous crystalline organosilica for epoxidation of styrene using CO2 as oxidant, Journal of CO2 Utilization, 55 (2022) 101843.
[36] Y. Fu, L. Liu, S. Tricard, K. Liang, J. Zhang, J. Fang, J. Zhao, Slow pyrolysis of Cu/Co-Co Prussian blue analog to enhance catalytic activity and selectivity in epoxidation of styrene, Appl. Catal., A, 657 (2023) 119161.
[37] Y. Zhang, A. Iqbal, J. Zai, S.-Y. Zhang, H. Guo, X. Liu, I. ul Islam, H. Fazal, X. Qian, Bromine and oxygen redox species mediated highly selective electro-epoxidation of styrene, Organic Chemistry Frontiers, 9 (2022) 436-444.
[38] Y. Zhang, A. Iqbal, J. Zai, W. Li, H. Guo, X. Meng, W. Li, I.u. Islam, Z. Xin, X. Qian, Balanced cathodic debromination and hydrogen evolution reactions endow highly selective epoxidation of styrene, Composites Part B: Engineering, 246 (2022) 110281.
[39] Z. Zhang, J. Tang, J. Chen, P. Cui, S. Jiao, W. Yi, Q. Ke, H. Yang, Efficient epoxidation of styrene within pickering emulsion-based compartmentalized microreactors, Catal. Today, 410 (2023) 222-230.
[40] W. Emori, G.J. Ogunwale, H. Louis, E.C. Agwamba, K. Wei, T.O. Unimuke, C.-R. Cheng, E.U. Ejiofor, F.C. Asogwa, A.S. Adeyinka, Spectroscopic (UV–vis, FT-IR, FT-Raman, and NMR) analysis, structural benchmarking, molecular properties, and the in-silico cerebral anti-ischemic activity of 2-amino-6-ethoxybenzothiazole, J. Mol. Struct., 1265 (2022) 133318.
[41] P.V. Ramana, Y.R. Krishna, K.C. Mouli, Experimental FT-IR and UV–Vis spectroscopic studies and molecular docking analysis of anti-cancer drugs Exemestane and Pazopanib, J. Mol. Struct., 1263 (2022) 133051.
[42] S. Janeoo, Reenu, A. Saroa, R. Kumar, H. Kaur, Computational investigation of bioactive 2,3-diaryl quinolines using DFT method: FT- IR, NMR spectra, NBO, NLO, HOMO-LUMO transitions, and quantum-chemical properties, J. Mol. Struct., 1253 (2022) 132285.
[43] B. Maleki, R. Sandaroos, S. Peiman, Mn (III) Schiff base complexes containing crown ether rings immobilized onto MCM-41 matrix as heterogeneous catalysts for oxidation of alkenes, Heliyon, 9 (2023).
[44] C.A. Salubi, Heterogeneous vanadium Schiff base complexes in catalytic oxidation reactions, UWC Scholar Publication, 2023 (2023) 110-119.
[45] J. Liu, W. Wang, L. Wang, P. Jian, Heterostructured V2O5/FeVO4 for enhanced liquid-phase epoxidation of cyclooctene, J. Colloid Interface Sci., 630 (2023) 804-812.
[46] A. Malik, U.P. Singh, Functionalized MCM-41 based recyclable catalyst (MCM-41@CP@PAL@Cu) for the epoxidation of alkenes using tert-BuOOH, J. Porous Mater., (2023) 2012-2019.
[47] M. Abboud, N. Al-Zaqri, T. Sahlabji, M. Eissa, A.T. Mubarak, R. Bel-Hadj-Tahar, A. Alsalme, F.A. Alharthi, A. Alsyahi, M.S. Hamdy, Instant and quantitative epoxidation of styrene under ambient conditions over a nickel(ii)dibenzotetramethyltetraaza[14]annulene complex immobilized on amino-functionalized SBA-15, RSC Adv., 10 (2020) 35407-35418.