Highly Porous Bi(III) Modified Rice Husk Silica Photocatalyst for the Photocatalytic Removal of Cationic Methylene Blue
محورهای موضوعی : Iranian Journal of CatalysisNormawati Jasni 1 , Anwar Iqbal 2 , N. H. H Abu Bakar 3 , Dede Heri Yuli Yanto 4 , Hor Jia Yi 5 , Noor Haida Mohd Kaus 6 , Mohd Norazmi Ahmad 7 , Sri Mulijani 8
1 - School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
2 - School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
3 - School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
4 - Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, Indonesia
5 - School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
6 - School of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
7 - Experimental and Theoretical Research Lab, Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
8 - Department of Chemistry, Bogor Agriculture University-Bogor-Indonesia, Indonesia
کلید واژه: Methylene Blue, Photocatalyst, Bismuth, Mesoporous silica, Rice husk, Sunlight,
چکیده مقاله :
A series of bismuth-silicate photocatalysts were synthesized via the sol-gel method for photodegradation of methylene blue (MB) under sunlight irradiation, utilizing rice husk ash as a silica precursor. The scanning electron microscopy/energy dispersive X-ray (SEM/EDX) analysis detected Bi content in 3-10 wt% range. Furthermore, it can be seen that the porosity decreased as the Bi concentration increased. The N2 adsorption-desorption analysis indicates the presence of mesopores with an average diameter of 297-554 Å with Brunauer–Emmett–Teller (BET) surface area of 5.6-30.5 m2/g. The photocatalyst with a Bi concentration of 4 wt% (RHSBi-A2) was the most active in the photodegradation of MB; the removal reached 90% within 4 h. The photodegradation is proposed to be driven by superoxide ( ), hydroxyl (•OH) radicals, and hole (h+) based on the valence band (VB) and conduction band (CB) potentials. The porous silica framework is proposed to act as an electron reservoir, allowing better MB adsorption and enhancing light absorption.
[1] H. Regen. Asian rivers are turning black. And our colorful closets are to blame (2020). doi: https://edition.cnn.com/style/article/dyeing-pollution-fashion-intl-hnk-dst-sept/index.html
[2] R.A. Basit, Z. Abbasi, M. Hafeez, P. Ahmad, J. Khan, M.U. Khandaker, K.S. Al-Mugren, A. Khalid, Crystals. 13(2), 2023, 281.
[3] J. Antony, S.V. Gonzalez, S. Bandyopadhyay, J. Yang, M. Rønning, Catal. Today. 413-415 (2023) 2113986.
[4] The Bangladesh Responsible Sourcing Initiative: A new model for green growth. International Bank for Reconstruction and Development/ The World Bank (2014).doi:https://documents.worldbank.org/en/publication/documentsreports/documentdetail/614901468768707543/the-bangladesh-responsible-sourcing-initiative-a-new-model-for-green-growth.
[5] N. Tahir, M. Zahid, I.A. Bhatti, Y. Jamil Y, Environ. Sci. Pollut. Res. 29 (2022) 6552–6567.
[6] M.T. Yagub, T.K. Sen, S. Afroze, H.M. Ang, Adv. Colloid Interface Sci. 209 (2014) 172-184.
[7] A. Makofane, D. E. Motaung, N. C. Hintsho-Mbita, Ceram. Int. 47(16) (2021) 22615–22626.
[8] T. de Oliveira Guidolin et al., J. Clean. Prod. 318 (2021) 128556.
[9] T.Q.Q. Viet, V.H. Khoi, N.T.H Giang, H.T.V Anh, N.M. Dat, M.T. Phong, N.H. Hieu, Colloids Surf. A: Physicochem. Eng. Asp. 629 (2021) 127464.
[10] Z. Zahid, A. Rauf, M. Javed, A. Alhujaily, S. Iqbal, A. Amjad, M. Arif, S. Hussain, A. Bahadur, N.S. Awwad, H.A. Ibrahium, F.F. Al-Fawzan, E.B. Elkaeed, Inorganics. 11(3) (2023) 133.
[11] D. Chahar, D. Kumar, P. Thakur, A. Thakur, Mater. Res. Bull. 62 (2023) 112205.
[12] M. Golmohammadi, H. Hanafi-Bojd, M. Shiva, Ceram. Int., 49(5) (2023) 7717–7726.
[13] L. Wang, X. Wang, J. Yin, Y. Zhu, C. Wang, Catal. Commun. 87 (2016) 98-101.
[14] T. Seyedi-Chokanlou, S. Aghabeygi, N. Molahasani, F. Abrinaei, Iran. J. Catal., 11(1) (2021) 49–58.
[15] D. Nunes, A. Pimentel, R. Branquinho, E. Fortunato, R. Martins, Catalysts, 11(4) (2021) 504.
[16] A. Singh, A. K. Singh, J. Liu, and A. Kumar, Catal. Sci. Technol., 11(12) (2021) 3946–3989.
[17] M. Stetsenko et al., Antireflection enhancement by composite nanoporous zeolite 3A–carbon thin film, Nanomaterials, 9(1) (2019) 1641
[18] P. Aggrey et al., Opt. Mater., 133 (2022) 113048
[19] Y.A. Belik, A.A. Vodyankin, E.D Fakhrutdinova, V.A. Svetlichnyi, O.V.J Vodyankina, J. Photochem. Photobiol. A: Chem. 195 (2022) 174-183.
[20] S.K. Mohamed, A.A. Ibrahim, A.A. Mousa, M.A. Betiha, E.A. El-Sharkawy, H.M.A Hassan, Sep. Purif. Technol.195 (2018) 174-183.
[21] A.S. El-Hakam, F.T. ALShorifi, R.S. Salama, S. Gamal, W.S.A. El-Yazeed, A.A. Ibrahim, I.A. Ahmed J. Mater. Res. Technol. 18 (2022) 1963-1976.
[22] I. J. Fernandes et al., Mat. Res., 20(2) (2017) 512–518.
[23] R. Haus, S. PRinz, and C. Priess, Assessment of High Purity Quartz Resources. Berlin Heidelberg: Springer, 2012.
[24] J. N. Appaturi,F. Adam, Appl. Catal. B. 136–137 (2013) 150–159.
[25] N. H. Ibrahim, A. Iqbal, N. Mohammad-Noor, M. R. Roziawati, S. Sreekantan, A. S. Zulkipli, 57 (2022) 1184–1190.
[26] F. Adam, A. Iqbal, Chem. Eng. J. 171(3) (2011) 1379–1386.
[27] S. Y. Yao, A. Iqbal, N. H. H. Abu Bakar, M. R. Yusop, H. Pauzi, D. Kanakaraju, ChemistrySelect, 7(40) (2022) e202201970.
[28] B. Divband, A. Jodaie, M. Khatmian, Iran. J. Catal., 9(1) 63–70.
[29] L. Kratofil Krehula et al., Polym. Bull., 76(4) (2019) 1697–1715.
[30] Z. Pan, D. O. Henderson, S. H. Morgan, J Non Cryst Solids, 171(2) (1994) 34–140.
[31] W. Zhang, Y. Li, C. Wang, and P. Wang, Desalination, 266 (1-3) (2011) 40–45.
[32] Z.-D. Meng et al., Mater. Sci. Eng. C, 32(8) (2012) 2175–2182.
[33] K. Brown, Thermodynamics and kinetics of silica scaling. International Workshop on Mineral Scaling. 2011.
[34] G. Nallathambi, T. Ramachandran, V. Rajendran, R. Palanivelu, Mat. Res. 14 (4) (2011) 554-559.
[35] C.F. Holder, R.E. Schaak, ACS Nano. 13(7) (2019) 7359–7365.
[36] S. Aprilia, C.M. Rosnelly, Zuhra, F. Fitriani, E.H. Akbar, M. Raqib, K. Rahmah, A. Amin, R.A. Baity, S Mater. Today: Proc. 87 (2023) 225-229.
[37] I. Rashid, N. Daraghmeh, M. Al-Remawi, S.A. Leharne, B.Z. Chowdhry, A. Badwan, J. Pharm. Sci. 98 (2009) 4887-4901
[38] S. Sankar, N. Kaur, S. Lee, D.Y. Kim, Ceram. Int. 44 (2018) 8720-8724
[39] Y. Astuti, A. Fauziyah, S. Nurhayati, A.D. Wulansari, R. Andianingrum, A.R. Hakim, G. Bhaduri. IOP Conf. Ser.: Mater Sci Eng. 107 (2016) 012006.
[40] K.A. Cychosz, M. Thommes, Engineering. 4(4) (2018) 559-566.
[41] R. Kumar, N. Enjamuri, J.K. Pandey, D. Sen, S. Mazumder, A. Bhaumik, B. Chowdhury. .Appl. Catal. A: Gen. 497 (2015) 51-57.
[42] A.K.R. Police, S. Basavaraju, D.K. Valluri, S. Machiraju, J. Mater. Sci. Technol. 29 (2013) 639-646.
[43] N. Mehrabanpour, A. Nezamzadeh-Ejhieh, S. Ghattavi, A. Ershadi, Appl. Surf. Sci., 614 (2023) 156252.
[44] H. Che, G. Che, E. Jiang, C. Liu, H. Dong, C. Li, J Taiwan Inst Chem Eng, 91 (2018) 224–234.
[45] P. Norouzzadeh, Kh. Mabhouti, M. M. Golzan, R. Naderali, Optik, 204 (2020) 164227.
[46] P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett., 9(23) (2018) 6814–6817.
[47] R. Köferstein, L. Jäger, S. G. Ebbinghaus, Solid State Ionics, 249–250 (2013) 1–5
[48] K. Katsumata, R. Motoyoshi, N. Matsushita, K. Okada, J. Hazard. Mater., 260 (2013) 475–482.
[49] A.J. Ward, A.M. Rich, A.F. Masters, T. Maschmeyer, New J. Chem. 37 (2013) 593-600.
[50] Z. Lazarević, S. Kostić, V. Radojević, M. Romčević, M. Gilić, M. Petrović-Damjanović, Romčevićet, N. Phys. Scr. T157 (2013) 014046.
[51] E.A. Al-Maliky, H.A. Gzar, M.G. Al-Azawy, IOP Conf. Ser.: Mater. Sci. En. 1184 (2021) 012004.
[52] M. Kosmulski, J. Colloid Interface Sci. 1 (2011) 1-15.
[53] S. Vahabirad, A. Nezamzadeh-Ejhieh, Ecotoxicol. Environ. Saf., 263 (2023) 115254.
[54] Z. A. AlOthman, M. A. Habila, R. Ali, A. Abdel Ghafar, M. S. El-din Hassouna, Arab. J. Chem., 7(6) (2014) 1148–1158.
[55] C. Yang et al., Sci Rep, 7(1) (2017) 3973.
[56] Z. Mengting et al., Environ. Pollut., 255 (2019) 113182.
[57] D. Pathania, S. Sharma, P. Singh, Arab. J. Chem., 10 (2017) S1445–S1451.
[58] N. Barka, S. Qourzal, A. Assabbane, A. Nounah, Y. Ait-Ichou, J. Saudi Chem. Soc., 15 (3) (2011) 263–267.
[59] J. Iqbal et al., Arab. J. Chem., 4(4) (2011) 389–395.
[60] A. Tolosana-Moranchel, C. Pecharromán, M. Faraldos, A. Bahamonde, Chem. Eng. Sci., 403 (2021) 126186.
[61] D. Chen et al., J. Clean. Prod., 268 (2020) 121725.
[62] S. Ghanei-Zare, M. Moghadasi, R. Khajavian, N. Akbarzadeh-T, M. Mirzaei, J. Mol. Struct. (2023) 1286 135563.
[63] F. Zheng et al., J. Rare Earths, 41(4) (2023) 539–549.
[64] M. J. Kadhim, M. A. Mahdi, A. M. Selman, S. K. Jamel AlAni, J. J. Hassan, N. M. Ahmed, Iran. J. Catal., 13(1) (2023)1-21
[65] B. Naik, B. Nanda, K. K. Das, K. Parida, J. Environ. Chem. Eng. 5(5) (2017) 4524–4530
[66] R. Ahmad, Z. Ahmad, A. U. Khan, N. R. Mastoi, M. Aslam, J. Kim, J. Environ. Chem. Eng., 4(4) (2016) 4143–4164.
[67] T. Senasu, S. Youngme, K. Hemavibool, S. Nanan, J Solid State Chem 297 (2021) 122088.
[68] M. Yaghoubi-berijani, Ba. Bahramian, S. Zargari, Iran. J. Catal., 10 (4) (2020) 307–317.
[69] A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Appl Catal A-Gen, 477 (2014) 83–92.
[70] G. K. Parshetti, A. A. Telke, D. C. Kalyani, S. P. Govindwar, J. Hazard. Mater., 176(1–3) (2010) 03–509.
[71] S. N. Veedu, S. Jose, S. B. Narendranath, M. R. Prathapachandra Kurup, P. Periyat, Environ Sci Pollut Res, 28(4) (2021) 4147–4155.
[72] K. Sathiyamoorthy, A. Silambarasan, S. Bharathkumar, J. Archana, M. Navaneethan, S. Harish, Mater. Res., Bull. 158 (2023) 112030.
[73] M. Naffeti, M.A. Zaïbi, C. Nefzi, A.V. García-Arias, R. Chtourou, P.A. Postigo, Environ. Technol. Innov. 30 (2023) 103133.
[74] Y. Ma, H. Shen, Y. Fang, H. Geng, Y. Zhao, Y. Li, J. Xu, Y. Ma, Magnetochemistry. 9 (2023) 45.