اثر درجه برشتگی نان تافتون بر مقدار آکریلآمید و مقایسه دو روشآنزیم آسپاراژیناز و اسید استیک برکاهش آن
محورهای موضوعی : تکنولوژی مواد غذایی- فرآورده های غلات و پختمعصومه بارانی 1 , محمد شاهدی باغ خندان 2 , میلاد فتحی 3
1 - دانشآموختهکارشناسیارشد، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران.
2 - استاد، گروه علوم و صنایعغذایی، دانشکده کشاورزی، دانشگاه صنعتیاصفهان، اصفهان، ایران.
3 - دانشیار، گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه صنعتی اصفهان، اصفهان، ایران.
کلید واژه: اسید استیک, غلات, واکنش میلارد, آنزیم آسپاراژیناز, فرایند پخت,
چکیده مقاله :
غلات به واسطه دارا بودن مقادیر بالای کربوهیدرات، حین حرارت دهی دستخوش تغیییراتی میشوند که گاهی مطلوب و گاهی نامطلوب میباشد. از جمله این واکنشها میتوان به میلارد اشاره کرد. و از محصولات مضر این واکنش میتوان آکریلآمید را نام برد. از این رو هدف از انجام این پژوهش بررسی تاثیر درجه برشتگی بر میزان آکریل آمید و اثر دو روش آنزیم آسپاراژیناز و اسید استیک بر کاهش آن در نان تافتون میباشد. برای این منظور میزان آکریل آمید در نان تافتون در حالت بدون برشتگی، برشتگی سطح یک و دو، مورد ارزیابی قرار گرفت و همانطور که انتظار میرفت با افزایش میزان برشتگی (افزایش زمان پخت)، آکریل آمید بیشتری در نان تولید میشود. سپس میزان آکریل آمید و خصوصیات حسی در نانهایی که خمیر آنها تحت تیمار اسید استیک در غلظتهای 15/0 و 3/0 درصد و آنزیم آسپاراژیناز در غلظت ppm 500 و 250 قرار گرفته بودند بررسی شد، استفاده از اسید استیک و آنزیم آسپاراژیناز به صورت ترکیبی طبق برنامهریزی با نرم افزار Design expert 2013 صورت گرفت. تجزیه واریانس دادهها بیانگر معنیدار بودن اثر برشتگی بر رنگ، معنیدار نبودن اثر آنزیم آسپاراژیناز و اسید استیک بر رنگ و معنیدار بودن اثر برشتگی و آنزیم آسپاراژیناز بر محتوای آکریلآمید میباشد. نتایج بهینه سازی با نرم افزار Design expert 2013 نشان داد پخت نان در برشتگی سطح دو در حضور آنزیم آسپاراژیناز با غلظت ppm500 و اسید استیک با غلظت 3/0 درصد، کمترین میزان آکریل آمید، با حفظ مطلوبیت خواص ارگانولپتیکی را به همراه دارد.
Cereals, due to their high carbohydrate content, undergo changes that are sometimes desirable and sometimes undesirable during heating. One of these reactions is Millard. Including Harmful products of this reaction can be called acrylamide. Therefore, the aim of this study was to investigate the effect of degree of toasting on the amount of acrylamide and the effect of two methods of asparaginase enzyme and acetic acid on its reduction in Taftoonbread.For this purpose, the amount of acrylamide was evaluated in Taftoon bread in the level zero, one and two toasting, and as expected, with increasing the amount of toasting (increasing the baking time), more acrylamide was produced in the bread. Then the amount of acrylamide and sensory properties were investigated in breads whose dough was treated with acetic acid at concentrations of 0.15 and 0.3% and asparaginase at concentrations of 250 and 500 ppm.The use of acetic acid and asparaginase enzyme was done in combination according to the plan with Design expert 2013 software. Analysis of variance showed that the effect of toasting on the color was significant, the effect of asparaginase enzyme and acetic acid on the color was not significant and the effect of toasting and asparaginase enzyme on the acrylamide content was significant.The results of optimization with Design expert 2013 software showed that baking bread in level two toast in the presence of asparaginase enzyme with a concentration of 500 ppm and acetic acid with a concentration of 0.3%, the lowest amount of acrylamide, while maintaining the desirability of organoleptic properties.
1. رضوی، م. ع. و اکبری، ر، 1393. خواص بیوفیزیکی محصولات کشاورزی و مواد غذایی. جلد اول، انتشارات دانشگاه فردوسی مشهد، مشهد، صص.301-109.
2. قائینی، ز، نیازمند، ر، شهیدینوقابی،م، 1394. اثر مقدار مخمر، زمان تخمیر ودمای سرخکردن بر میزان آکریل آمید و خصوصیات فیزیکوشیمیایی دونات. نشریه پژوهش و نوآوری در علوم و صنایع غذایی، 4(4)، صص.298-283.
3. Bråthen, E. and Knutsen, S.H., 2005. Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread. Food Chemistry, 92(4), pp.693-700.
4. Capuano, E., Ferrigno, A., Acampa, I., Serpen, A., Açar, Ö. Ç., Gökmen, V. and Fogliano, V., 2009. Effect of flour type on Maillard reaction and acrylamide formation during toasting of bread crisp model systems and mitigation strategies. Food Research International, 42(9), pp. 1295-1302.
5. Ciesarová, Z. 2016. Impact of l-asparaginase on acrylamide content in fried potato and bakery products. Acrylamide in Food [Internet]. Elsevier;[cited 2020 Mar 28], pp. 405-421.
6. Claus, A., Mongili, M., Weisz, G., Schieber, A. and Carle, R., 2008. Impact of formulation and technological factors on the acrylamide content of wheat bread and bread rolls. Journal of cereal science, 47(3), pp.546-554.
7. Ghasemzadeh V, Atefi M, Homayoonfar R, Hejazi A. and Touderoosta, Z., 2012. Investigation of acrylamide formation conditions and pathways to reduce it in specific food sources. Iranian Journal of Nutrition Sciences and Food Industry, 7(5), pp. 957-968.
8. Gökmen, V. and Şenyuva, H. Z., 2006. Study of colour and acrylamide formation in coffee, wheat flour and potato chips during heating. Food Chemistry, 99(2), pp. 238-243.
9. Hendriksen, H. V., Budolfsen, G. and Baumann, M. J., 2013. Asparaginase for acrylamide mitigation in food. Aspects of Applied Biology, (116), pp. 41-50.
10. Katina, K., Heiniö, R. L., Autio, K. and Poutanen, K., 2006. Optimization of sourdough process for improved sensory profile and texture of wheat bread. LWT-Food Science and Technology, 39(10), pp.1189-1202.
11. Keramat, J., LeBail, A., Prost, C . and Jafari, M., 2011. Acrylamide in baking products: a review article. Food and Bioprocess Technology, 4(4), pp. 530-543.
12. Kita, A., Bråthen, E., Knutsen, S. H. and Wicklund, T., 2004. Effective ways of decreasing acrylamide content in potato crisps during processing. Journal of Agricultural and Food Chemistry, 52(23), pp.7011-7016.
13. Krishnakumar, T. and Visvanathan, R., 2014. Acrylamide in food products: a review. J. Food Process Tech, 5(7), p. 1.
14. Kukurová, K., Morales, F. J., Bednarikova, A. and Ciesarova, Z., 2009. Effect of l‐asparaginase on acrylamide mitigation in a fried‐dough pastry model. Molecular Nutrition & Food Research, 53(12), pp. 1532-1539.
15. Mestdagh, F., Maertens, J., Cucu, T., Delporte, K., Van Peteghem, C. and De Meulenaer, B., 2008. Impact of additives to lower the formation of acrylamide in a potato model system through pH reduction and other mechanisms. Food Chemistry, 107(1), pp. 26-31.
16. Mustafa, A., R, Andersson., J, Rosén., A, Kamal-Eldin. and P, Åman., 2005. Factors influencing acrylamide content and color in rye crisp bread. Journal of Agricultural and Food Chemistry, 53(15), pp. 5985-5989.
17. Negoiță, M. and Culețu, A., 2016. Application of an accurate and validated method for identification and quantification of acrylamide in bread, biscuits and other bakery products using GC-MS/MS system. Journal of the Brazilian Chemical Society, 27, pp.1782-1791.
18. Parker, J.K., Balagiannis, D.P., Higley, J., Smith, G., Wedzicha, B.L. and Mottram, D.S., 2012. Kinetic model for the formation of acrylamide during the finish-frying of commercial French fries. Journal of Agricultural and Food Chemistry, 60(36), pp.9321-9331.
19. Pedreschi, F., Kaack, K. and Granby, K., 2008. The effect of asparaginase on acrylamide formation in French fries. Food chemistry, 109(2), pp. 386-392.
20. pittet, A., Perisset, A. and Oberson, J.M., 2004. Trace level determination of acrylamide in cereal- based foods by gas chromatography – mass spectrometery. Journal of Chromatography A, 1035, pp.123-130.
21. Przygodzka, M., Piskula, M.K., Kukurová, K., Ciesarová, Z., Bednarikova, A. and Zieliński, H., 2015. Factors influencing acrylamide formation in rye, wheat and spelt Breads. J. Cereal Sci. 65, pp.96-102.
22. Rifai, L. and Saleh, F. A., 2020. A review on acrylamide in food: Occurrence, toxicity, and mitigation strategies. International Journal of Toxicology, 39(2), pp. 93-102.
23. Sarion, C., Codină, G. G. and Dabija, A., 2021. Acrylamide in bakery products: A review on health risks, legal regulations and strategies to reduce its formation. International Journal of Environmental Research and Public Health, 18(8), pp.4332.
24. Stadler, R. H., Blank, I., Varga, N., Robert, F., Hau, J., Guy, P. A., ... . and Riediker, S., 2002. Acrylamide from Maillard reaction products. Nature, 419(6906), pp. 449-450.
25. Zhang, Y., Ren, Y. and Zhao, H., 2007. Determination of acrylamide in Chinese traditional carbohydrate – rich foods using gas chromatography combined with electrospray ionization tandem mass spectrometery. Journal of AnalyticalChemistry. Acta, 584, pp. 322-332.
26. Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., ... .and Villagran, M. D., 2003. Acrylamide formation mechanism in heated foods. Journal of Agricultural and Food Chemistry, 51(16), pp. 4782-4787.