• Home
  • insitu synthesis and pressureless sintering
    • List of Articles insitu synthesis and pressureless sintering

      • Open Access Article

        1 - Comparison the effect of sintering temperature on the synthesis and properties of B4C-TiB2 nanocomposites by sol gel and insitu methods
        Mina Saeedi Heydari hamidreza baharvandi
        The goal of this study was to investigate the effect of sintering temperature on the synthesis and properties of B4C-TiB2 nanocomposites by sol gel and insitu method to obtain samples with 10 wt% TiB2 nanoparticles by pressureless sintering. Accordingly, raw materials More
        The goal of this study was to investigate the effect of sintering temperature on the synthesis and properties of B4C-TiB2 nanocomposites by sol gel and insitu method to obtain samples with 10 wt% TiB2 nanoparticles by pressureless sintering. Accordingly, raw materials of B4C and titanium tetraisopropoxide (TTIP) were used to synthesis of B4C-TiB2 by sol gel method and TiO2, Carbon and B4C powders used for synthesizing of B4C-TiB2 by insitu method. The samples were also sintered at 2100, 2175 and 2250 °C in argon atmosphere for 1.5 hours. After that, phase XRD and FESEM analysis, relative density and micro hardness tests were used. The results show that the relative density and microhardness of boron carbide have been improved by the formation of TiB2 by both methods of sol gel and in site synthesis, and the values obtained from the sol gel method are more than that of insitu synthesis. Relative density for B4C-TiB2 samples obtained from the sol gel method at 2100, 2175 and 2250°C was 73.63%, 81.67% and 92.03%, respectively, and for B4C-TiB2 specimens obtained from the in situ method was 71.49%, 78.66% and 90.07%. Also, increasing the temperature from 2100°C to 2250°C improves the compressibility and thus increases the relative density and microhardness of B4C-TiB2 nanocomposites in both methods. Manuscript profile