Comparison the effect of sintering temperature on the synthesis and properties of B4C-TiB2 nanocomposites by sol gel and insitu methods
Subject Areas :Mina Saeedi Heydari 1 , hamidreza baharvandi 2
1 - MUT university
2 - mut university
Keywords: sol gel, B4C-TiB2 nanocomposite, insitu synthesis and pressureless sintering,
Abstract :
The goal of this study was to investigate the effect of sintering temperature on the synthesis and properties of B4C-TiB2 nanocomposites by sol gel and insitu method to obtain samples with 10 wt% TiB2 nanoparticles by pressureless sintering. Accordingly, raw materials of B4C and titanium tetraisopropoxide (TTIP) were used to synthesis of B4C-TiB2 by sol gel method and TiO2, Carbon and B4C powders used for synthesizing of B4C-TiB2 by insitu method. The samples were also sintered at 2100, 2175 and 2250 °C in argon atmosphere for 1.5 hours. After that, phase XRD and FESEM analysis, relative density and micro hardness tests were used. The results show that the relative density and microhardness of boron carbide have been improved by the formation of TiB2 by both methods of sol gel and in site synthesis, and the values obtained from the sol gel method are more than that of insitu synthesis. Relative density for B4C-TiB2 samples obtained from the sol gel method at 2100, 2175 and 2250°C was 73.63%, 81.67% and 92.03%, respectively, and for B4C-TiB2 specimens obtained from the in situ method was 71.49%, 78.66% and 90.07%. Also, increasing the temperature from 2100°C to 2250°C improves the compressibility and thus increases the relative density and microhardness of B4C-TiB2 nanocomposites in both methods.
[1] A. Suri, C. Subramanian, J. Sonber & T. Murthy, “Synthesis and consolidation of boron carbide: a reviewˮ, International Materials Reviews, Vol. 55, pp. 4-40, 2010.
[2] V. Domnich, S. Reynaud, R. A. Haber & M. Chhowalla, “Boron carbide: structure, properties, and stability under stressˮ, Journal of the American Ceramic Society, Vol. 94, pp. 3605-3628, 2011.
[3] F. Thevenot, “A review on boron carbideˮ, Key Engineering Materials, Vol. 56, pp. 59-88, 1991.
[4] م. شکوری، م. سعیدی حیدری و ح. ر. بهاروندی، "مروری بر تاثیر کمک سینترهای اکسیدی بر رفتار سینتزپذیری کامپوزیت های کاربید بور"، فرآیندهای نوین در مهندسی مواد، شماره 10، ص: 196-185، 1395.
[5] V. V. Skorokhod, “processing, microstructure, and mechanical properties of B4C―TiB2 particulate sintered composites. part i. pressureless sintering and microstructure evolutionˮ, Powder Metallurgy and Metal Ceramics, Vol. 39, pp. 414-423, 2000.
[6] S. Ordan’yan, V. Rumyantsev, D. Nesmelov & D. Korablev, “Physicochemical basis of creating new ceramics with participation of boron-containing refractory compounds and its practical implementationˮ, Refractories and Industrial Ceramics, Vol. 1-4, 2012.
[7] A. Jostsons, C. DuBose, G. Copeland & J. Stiegler, “Defect structure of neutron irradiated boron carbideˮ, Journal of Nuclear Materials, Vol. 49, pp. 136-150, 1973.
[8] P. Lü, X. Yue, H. Ru & L. Yu, “Microstructure and mechanical properties of B4C-TiB2-Al composites fabricated by vacuum infiltrationˮ, Rare Metals, Vol. 29, pp. 92-97, 2010.
[9] S. Yamada, K. Hirao, Y. Yamauchi & S. Kanzaki, “Mechanical and electrical properties of B4C–CrB2 ceramics fabricated by liquid phase sinteringˮ, Ceramics international, Vol. 29, pp. 299-304, 2003.
[10] O. Malek, J. Vleugels, K. Vanmeensel, S. Huang, J. Liu, S. Van den Berghe, A. Datye, K. H. Wu & B. Lauwers, “Electrical discharge machining of B4C–TiB2 compositesˮ, Journal of the European Ceramic Society, Vol. 31, pp. 2023-2030, 2011.
[11] B. Lauwers, J. P. Kruth & K. Brans, “Development of technology and strategies for the machining of ceramic components by sinking and milling EDMˮ, CIRP Annals-Manufacturing Technology, Vol. 56, pp. 225-228, 2007.
[12] N. Cho, “Processing of boron carbideˮ, 2006.
[13] R. Speyer & H. Lee, “Advances in pressureless densification of boron carbideˮ, Journal of materials science, Vol. 39, pp. 6017-6021, 2004.
[14] K. Behler, J. LaSalvia, E. Shanholtz, M. Golt, S. Walck & K. Kuwelkar, “Effect of Al2O3 on the densification and microstructure of B4Cˮ, Advances in Ceramic Armor, Bioceramics, and Porous Materials: Ceramic Engineering and Science Proceedings Vol. 37, No. 4, pp. 21-30, 2017.
[15] S. C. Sun, T. Sakamoto, K. Nakai, H. Kurishita, S. Kobayashi, J. Y. Xu, H. Cao, B. Gao, X. Bian & W. Y. Wu, “Microstructures and mechanical properties in B4C–CeO2 ceramicsˮ, Journal of Nuclear Materials, Vol. 417, pp. 663-667, 2011.
[16] A. Moradkhani & H. Baharvandi, “Mechanical properties and fracture behavior of B4C-nano/micro SiC composites produced by pressureless sinteringˮ, International Journal of Refractory Metals and Hard Materials, Vol. 70, pp. 107-115, 2018.
[17] X. Zhang, Z. Zhang, W. Wang, H. Che, X. Zhang, Y. Bai, L. Zhang & Z. Fu, “Densification behaviour and mechanical properties of B4C–SiC intergranular/intragranular nanocomposites fabricated through spark plasma sintering assisted by mechanochemistryˮ, Ceramics International, Vol. 43, pp. 1904-1910, 2017.
[18] S. S. Rehman, W. Ji, S. A. Khan, Z. Fu & F. Zhang, “Microstructure and mechanical properties of B4C densified by spark plasma sintering with Si as a sintering aidˮ, Ceramics International, Vol. 41, pp. 1903-1906, 2015.
[19] M. Saeedi Heydari, H. Baharvandi & K. Dolatkhah, “Effect of TiO2 nanoparticles on the pressureless sintering of B4C–TiB2 nanocompositesˮ, International Journal of Refractory Metals and Hard Materials, Vol. 51, pp. 6-13, 2015.
[20] Y. j. Wang, H. x. Peng, F. Ye & Y. Zhou, “Effect of TiB2 content on microstructure and mechanical properties of in-situ fabricated TiB2/B4C compositesˮ, Transactions of Nonferrous Metals Society of China, Vol. 21, pp. 369-373, 2011.
[21] V. Skorokhod & V. Krstic, “High strength-high toughness B4C-TiB2 compositesˮ, Journal of materials science letters, Vol. 19, pp. 237-239, 2000.
[22] D. V. Dudina, D. M. Hulbert, D. Jiang, C. Unuvar, S. J. Cytron & A. K. Mukherjee, “In situ boron carbide–titanium diboride composites prepared by mechanical milling and subsequent Spark Plasma Sinteringˮ, Journal of Materials Science, Vol. 43, pp. 3569-3576, 2008.
[23] H.R. Baharvandi, A. Hadian & A. Alizadeh, “Processing and Mechanical Properties of Boron Carbide–Titanium Diboride Ceramic Matrix Compositesˮ, Applied Composite Materials, Vol. 13, pp. 191-198, 2006.
[24] H. Baharvandi & A. Hadian, “Pressureless sintering of TiB2-B4C ceramic matrix compositeˮ, Journal of Materials Engineering and Performance, Vol. 17, pp. 838-841, 2008.
[25] M. Saeedi Heydari & H. R. Baharvandi, “Comparing the effects of different sintering methods for ceramics on the physical and mechanical properties of B4C–TiB2 nanocompositesˮ, International Journal of Refractory Metals and Hard Materials, Vol. 51, pp. 224-232, 2015.
[26] Z. Liu, D. Wang, J. Li, Q. Huang & S. Ran, “Densification of high-strength B4C–TiB2 composites fabricated by pulsed electric current sintering of TiC–B mixtureˮ, Scripta Materialia, Vol. 135, pp. 15-18, 2017.
[27] V. Skorokhod, M. Vlajić & V. D. Krstić, “Pressureless sintering of B4C-TiB2 ceramic compositesˮ, Materials science forum, Trans Tech Publ, pp. 219-224, 1998.
[28] م. سعیدی حیدری و ح. ر. بهاروندی، "بررسی اثر دما و زمان کلسیناسیون بر ترکیب فازی و مورفولوژی نانو پودر کامپوزیتی B4C -Nano TiB2"، سومین همایش سراسری کاربردهای دفاعی علوم نانو، دانشگاه جامع امام حسین (ع)، تهران، 1392.
[29] I. Gunjishima, T. Akashi & T. Goto, “Characterization of directionally solidified B4C-TiB2 composites prepared by a floating zone methodˮ, Materials Transactions, Vol. 43, pp. 712-720, 2002.
[30] V. V. Skorokhod, “Processing, microstructure, and mechanical properties of B4C-TiB2 particulate sintered composites, part I, pressureless sintering and microstructure evolutionˮ, Powder Metallurgy and Metal Ceramics, Vol. 39, pp. 414-423, 2000.
[31] L. Levin, N. Frage & M. Dariel, “The effect of Ti and TiO2 additions on the pressureless sintering of B4Cˮ, Metallurgical and Materials Transactions A, Vol. 30, pp. 3201-3210, 1999.
[32] M. Zhang, W. K. Zhang, L. Z. Gao & Y. J. Zhang, “Fabrication and microstructure of B4C matrix composites by hot-pressing sinterˮ, Advanced Materials Research, Vol. 368, pp. 326-329, 2012.
[33] A. D. Liu, Y. J. Qiao & Y. Y. Liu, “Pressureless sintering and properties of boron carbide-titanium diboride composites by in situ reactionˮ, Key Engineering Materials, Vol. 525, pp. 321-324, 2013.
[34] T. S. Srivatsan, G. Guruprasad, D. Black, M. Petraroli, R. Radhakrishnan & T. Sudarshan, “Microstructural development and hardness of TiB2–B4C composite samples: Influence of consolidation temperatureˮ, Journal of Alloys and Compounds, Vol. 413, pp. 63-72, 2006.
[35] B. Zou, P. Shen, X. Cao & Q. Jiang, “Reaction path of the synthesis of α-Al2O3-TiC-TiB2 in an Al-TiO2-B4C systemˮ, International Journal of Refractory Metals and Hard Materials, Vol. 29, pp. 591-595, 2011.
[36] J. K. Walker, “Synthesis of TiB2 by the borothermic/carbothermic reduction of TiO2 with B4Cˮ, Advanced Ceramic Materials;(USA), Vol. 3, 1988.
[37] D. Wang, S. Ran, L. Shen, H. Sun & Q. Huang, “Fast synthesis of B4C–TiB2 composite powders by pulsed electric current heating TiC–B mixtureˮ, Journal of the European Ceramic Society, Vol. 35, pp. 1107-1112, 2015.
[38] D. R. Gaskell & D. E. Laughlin, “Introduction to the thermodynamics of materialsˮ, CRC Press, 2017.
_||_