Development of mathematical and optimization model for agricultural water allocation based on non-dominated sorting
Subject Areas : Farm water management with the aim of improving irrigation management indicatorsReza Lalehzari 1 * , Hadi Moazed 2 , Saeed Boroomand Nasab 3 , Ali Haghighi 4
1 - Ph.D Student, Department of Water Science Engineering, Shahid Chamran University of Ahvaz, Iran
2 - Professor; Department of Irrigation and Drainage; Faculty of Water Science Engineering, Shahid Chamran University of Ahvaz, Iran
3 - Professor; Department of Irrigation and Drainage; Faculty of Water Science Engineering, Shahid Chamran University of Ahvaz, Iran
4 - Associate Professor, Department of Civil Engineering, Faculty of Engineering; Shahid Chamran University of Ahvaz, Iran
Keywords: Cropping Pattern, Drought, Genetic algorithm, optimal allocation,
Abstract :
Water resource management is a main driver to increase economic productivity for an agricultural area. Under water shortage condition, efficient use of available water is necessary for required sustainable crop production in arid and semi-arid area. Therefore, a combination procedure of mathematical modeling and optimization techniques has been developed for water allocation to maximize the economical productivity and total efficiency of an irrigation scheme.Optimization model is presented using multiobjective genetic algorithm and evaluate by two objective functions. Water use efficiency, cropping pattern, reduction of irrigation losses, effective use of rainfall and cultivated area are considered in the objective functions of the model. Irrigation water requirement for each growing stage and cultivated area have been considered as decision making variables. For field study, the main crops of Baghmalek plain and their related area, the cost of agricultural inputs and final price of crops were collected in farming year 2013-2014. The results show that the optimal cultivation area allocated among various crops is decreased for maize, melon, tomato and onion in drought condition. Tomato, bean and onion have obtained more volume of total available water, respectively. Tomato in relative yield and net benefit ratio, vegetable in the percentage of allocated water and bean in effective use of water have the minimum values of evaluation parameters.
باریکانی، ا.، احمدیان، م.، خلیلیان، ص. و چیذری، ا.ح. 1391. استفاده تلفیقی پایدار از منابع آب سطحی و زیرزمینی در تعیین الگوی بهینه کشت دشت قزوین. اقتصاد کشاورزی و توسعه. 20(77): 29-56.
بی نام، 1392. مطالعات تهیه بیلان منابع آب محدودههای مطالعاتی حوزه آبریز رودخانههای هندیجان – جراحی (گزارش بیلان آب محدوده مطالعاتی باغملک). سازمان آب و برق خوزستان. 66 ص.
پرهیزکاری، ا.، مظفری، م.، خاکی، م. و تقیزاده رنجبری، ح. 1394. تخصیص بهینه منابع آب و اراضی در منظقه رودبارالموت با استفاده از مدل FGFP. نشریه حفاظت منابع آب و خاک، 4 (4): 11-24.
رستگاری پور، ف. و صبوحی صابونی، م. 1391. برنامهریزی کسری خاکستری یک رهیافت تجربی جدید در کشاورزی پایدار، مطالعه موردی: شهرستان قوچان. نشریه دانش کشاورزی و تولید پایدار. 22(1): 127-135.
رمضانی اعتدالی، ه.، لیاقت، ع.، پارسی نژاد، م.، توکلی، ع.ر. و بزرگ حداد، ا. 1391. توسعه مدل تخصیص بهینه آب در اراضی آبی و دیم جهت افزایش بهرهوری اقتصادی. رساله دکتری آبیاری و زهکشی گروه مهندسی آبیاری و آبادانی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران. 170 ص.
سلطانی، ف. 1388. تغییرات کمی و کیفی آب زیرزمینی دشت باغملک بر اثر خشکسالی و برآورد میزان تغییر حجم سفره آبدار. دومین همایش ملی اثرات خشکسالی و راهکارهای مدیریت آن. اصفهان.
محمدی، ح.، بوستانی، ف. و کفیلزاده، ف. 1391. تعیین الگوی کشت بهینه با استفاده از الگوریتم بهینهسازی چندهدفه غیرخطی فازی: مطالعه موردی. آب و فاضلاب. 4: 43-55.
محمدیان، ف.، علیزاده، ا.، نیریزی، س. و عربی، ا. 1386. طراحی الگوی پایدار با تاکید بر مبادله آب مجازی. مجله آبیاری و زهکشی ایران. 2(1): 109- 126.
Al Khamisi, S.A., Prathapar, S.A. and Ahmed, M. 2013. Conjunctive use of reclaimed water and groundwater in crop rotations. Agricultural Water Management. 116:228–234.
Allen, R.G., Pereira, L.S., Raes, D. and Smith, M. 1998. Crop evapotranspiration: guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper, no 56. Rome, Italy.
Arikan, F. and Gungor, Z. 2007. A two-phase approach for multi objective programming problems with fuzzy coefficients. Information Sciences. 177: 5191–5202.
Azamathulla, H.M., Wu, F.C., Ghani, A.A., Narulkar, S.M., Zakaria, N.A. and Chang, C.K. 2008. Comparison between genetic algorithm and linear programming approach for real time operation. Journal of Hydro-environment Research. 2:172-181.
Bergez, J.E. 2013. Using a genetic algorithm to define worst-best and best-worst options of a DEXi-type model: Application to the MASC model of cropping-system sustainability. Computers and Electronics in Agriculture. 90: 93–98.
Calvo, I.P. and Estrada, J.C. 2009. Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosystems Engineering. 102:202–218.
Dai, C., Yao, M., Xie, Z., Chen, C., Liu, J. 2009. Parameter optimization for growth model of greenhouse crop using genetic algorithms. Applied Soft Computing. 9:13–19.
Dandy, G.C., Engelhardt, 2001. The optimal scheduling of water main replacement using genetic algorithm. Journal of Water Resource Planning and Management. ASCE, 127(4): 214-223.
Doorenbos, J. and Kassam, A.H. 1979. Yield Response to Water. FAO Irrigation and Drainage paper No. 33, FAO, Rome, Italy, p. 193.
Elferchichi, A., Gharsallah, O., Nouiri, I., Lebdi, F. and Lamaddalena, N. 2009. The genetic algorithm approach for identifying the optimal operation of a multi-reservoirs on-demand irrigation system. Biosystems Engineering. 102: 334–344.
Espinoza, F.P., Minska, B.S. and Goldberg, D.E. 2005. Adaptive hybrid genetic algorithm for groundwater remediation design. Journal of Water Resource Planning and Management. ASCE, 131(1): 14-24.
Fotakis, D. and Sidiropoulos, E. 2012. A new multi-objective self-organizing optimization algorithm (MOSOA) for spatial optimization problems. Applied Mathematics and Computation. 218: 5268-5180.
Haouari, M. and Azaiez, M.N. 2001. Optimal cropping patterns under water deficits. European Journal of Operational Research. 130:133-146.
Haq, Z.U., Anwar, A, 2010. Irrigation scheduling with genetic algorithms. Journal of Irrigation and Drainage Engineering. ASCE, 136(10):704-714.
Marler, R.T. and Arora, J.S. 2004. Survey of multi-objective optimization methods for engineering. Struct. Multidisc. Optim. 26:369-395.
Pareto, V. 1906: Manuale di Economica Politica, Societa Editrice Libraria. Milan; translated into English by A.S. Schwier as Manual of Political Economy, edited by A.S. Schwier and A.N. Page, 1971. New York: A.M. Kelley.
Parsinejad, M., Bemani Yazdi, A., Araghinejad, S., Nejadhashemi, A.P. and Sarai Tabrizi, M. 2013. Optimal water allocation in irrigation networks based on real time climatic data. Agricultural Water Management. 117: 1–8.
Raju, K.S. and Kumar, D.N. 1999. Multi-criterion decision making in irrigation planning. Agricultural Systems. 62: 117–129.
Ritzel, B.J., Eheart, J.W. and Ranjithan, S. 1994. Using genetic algorithms to solve multiple objective groundwater pollution containment. Water Resource Research. 30(5): 1589-1604.
Shangguan, Z., Shao, M., Horton, H., Lei, T., Qin, L. and Ma, J. 2002. A model for regional optimal allocation of irrigation water resources under deficit irrigation and its applications. Agricultural Water Management. 52:139-154.
Singh, A. and Panda, S.N. 2012. Development and application of an optimization model for the maximization of net agricultural return. Agricultural Water Management. 115:267-275.
Tsakoros, G. and Spiliotis, M. 2006. Cropping pattern planning under water supply from multiple sources. Irrigation and Drainage Systems. 20: 57-68.
Vila, M.J. and Fereres, E. 2012. Combining the simulation crop model AquaCrop with an economic model for the optimization of irrigation management at farm level. European Journal of Agronomy. 36:21-31.
Wang, Y., Chen, Y. and Peng, S. 2011. A GIS framework for changing cropping pattern under different climate conditions and irrigation availability scenarios. Water Resources Management. 25: 3073-3090.
Wardlaw, R. and Bhaktikul, K. 2004. Application of genetic algorithms for irrigation water scheduling. Irrigation and Drainage. 53(4): 397-414.
Zanetti, S.S., Sousa, E.F., Olivera, V.P.S., Almeida, F.T. and Bernardo, S. 2007. Estimating evapotranspiration using artificial neural network and minimum climatological data. Journal of Irrigation and Drainage Engineering, ASCE. 133: 83–89.
Zhang, B., Yuan, S., Zhang, J.S. and Li, H. 2008. Study of Corn Optimization Irrigation Model by Genetic Algorithms. Computer and Computing Technologies in Agriculture. 258:121-132.