Surveying the effect of electrokinetic together with leaching remediation on quality of drain water of a saline-alkaline soil
Subject Areas : Farm water management with the aim of improving irrigation management indicatorsمحمد علی غلامی سفیدکوهی 1 , میثم رمضانی 2 , میر خالق ضیاء تبار احمدی 3
1 - دانشگاه علوم کشاورزی و منابع طبیعی ساری
2 - دانشگاه علوم کشاورزی و منابع طبیعی ساری
3 - دانشگاه علوم کشاورزی و منابع طبیعی ساری
Keywords: Horizontal Electrokinetic, Aluminum Electrodes, Saline-alkaline Soil Remediation, Electrical Current,
Abstract :
The salinity of water and soil is called white death in many countries, because of its importance. Generally, the quantity of leaching water, energy consumption and time usage of soil remediation procedure are important factors which affect suitable method of soil reclamation. Electrokinetic (EK) is a physical method for salt extraction such as chemical, Organic and inorganic compounds. In this study, the horizontal placement of electrodes along with leaching procedure was used in Electrokinetic remediation of a saline-alkaline soil. For this purpose, two aluminum and reticular electrodes was placed above and under the soil column as anode and cathode, respectively. The soil columns heights were 10, 20, 30 and 45 cm. Then leaching water (30 mm) every day and totally Equivalent to Four times pore water was entered to soil and properties of drain water was measured. Although, leaching procedure without applying electrokinetic technique was done as control treatment. The results showed that Electrical Conductivity (EC) of drain water and current rate was changed sinusoidal in EK. Although, PH and temperature of drain water was changed between 6.8 to 9 and 23 to 35 centigrade, respectively. Leaching of cations increased in EK technique significantly (p<0.05). Leaching of anions decreased, but this change was not significant. The ratio of Na+ leaching compared to Ca2+ and Mg2+ in EK treatments was 8.5 percent greater than controls. Generally, EK method changed EC, weight of leached salt per soil weight and PH of drain water significantly.
پذیرا، ا.، و کشاورز، ع. 1387. بررسی و تعیین آب مورد نیاز اصلاحی خاک های شور و سدیمی اراضی جنوب شرقی استان خوزستان. مجله تحقیقات مهندسی کشاورزی, جلد ۴، شماره ۱۶.
جلیلفر، عظیمبردی، و مهاجرمیلانی, پ. 1372. منحنیهای شور و سدیمزدایی خاکهای شور و قلیا منطقه گرگان. نشریه فنی شماره ۷۲/۲۰۷ مرکز تحقیقات کشاورزی گرگان و گنبد.
هاشمینژاد، ی.، غلامی، م. و سلطانی، و. 1391. ارزیابی دقت روشهای حل مدل بیلان حجمی در تخمین پیشروی آب در آبیاری جویچهای. نشریه حفاظت منابع آب و خاک، 1 (3): 59-68.
Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. 1988. Salt-Affected Soils and their Management. FAO Soils Bulletin. Soil Resources Management and Conservation Service FAO Land and Water Development Division. Retrieved from http://www.fao.org/docrep/x5871e/x5871e00.htm#Contents
Akhtar, M. S., Steenhuis, T. S., Richards, B. K., & McBride, M. B. 2004. Chloride and Lithium Transport in Large Arrays of Undisturbed Silt Loam and Sandy Loam Soil Columns. Vadose Zone Journal. http://doi.org/10.2136/vzj2004.0316
Al-Hamdan, A. Z., & Reddy, K. R. 2008. Transient behavior of heavy metals in soils during electrokinetic remediation. Chemosphere, 71(5): 860–871. http://doi.org/10.1016/j.chemosphere.2007.11.028
Ammari, T. G., Tahboub, A. B., Saoub, H. M., Hattar, B. I., & Al-Zu’bi, Y. a. 2008. Salt removal efficiency as influenced by phyto-amelioration of salt-affected soils. Journal of Food, Agriculture and Environment, 6(3-4): 456–460.
Anapali, Ö., Üstün, N., Öztafi, T., & Hanay, A. 2001. Defining Effective Salt Leaching Regions Between Drains. Turkish Journal of Agriculture and Forestry, 25: 51–56.
Beaudin, J. J. 2010. Remediation of Salt Contaminated Sites Using Electrokinetics. ROYAL ROADS UNIVERSITY.
Cho, J. M., Park, S. Y., & Baek, K. 2010. Electrokinetic restoration of saline agricultural lands. Journal of Applied Electrochemistry, 40(6): 1085–1093. http://doi.org/10.1007/s10800-010-0072-3
Choi, J. H., Maruthamuthu, S., Lee, H. G., Ha, T. H., & Bae, J. H. 2009. Nitrate removal by electro-bioremediation technology in Korean soil. Journal of Hazardous Materials, 168(2-3): 1208–1216. http://doi.org/10.1016/j.jhazmat.2009.02.162
Giannis, A., Gidarakos, E., & Skouta, A. 2007. Application of sodium dodecyl sulfate and humic acid as surfactants on electrokinetic remediation of cadmium-contaminated soil. Desalination, 211(1-3): 249–260. http://doi.org/10.1016/j.desal.2006.02.097
Hassan, I., & Mohamed-el-hassan, E. 2012. Electrokinetic Remediation with Solar Power for a Homogeneous Soft Clay Contaminated with Copper. International Journal of Environmental Pollution and Remediation, 1(1). http://doi.org/10.11159/ijepr.2012.010
Jayasekera, S., & Hall, S. 2007. Modification of the properties of salt affected soils using electrochemical treatments. Geotechnical and Geological Engineering, 25(1): 1–10. http://doi.org/10.1007/s10706-006-0001-8
Kim, D. H., Jo, S. U., Choi, J. H., Yang, J. S., & Baek, K. 2012. Hexagonal two dimensional electrokinetic systems for restoration of saline agricultural lands: A pilot study. Chemical Engineering Journal, 198-199, 110–121. http://doi.org/10.1016/j.cej.2012.05.076
Kim, S., Moon, S., & Kim, K. 2001. Removal of heavy metals from soils using enhanced electrokinetic soil processing. Water, Air, and Soil Pollution, 125(1): 259–272.
Lageman, R., Clarke, R. L., & Pool, W. 2005. Electro-reclamation, a versatile soil remediation solution. Engineering Geology, 77(3-4 SPEC. ISS.), 191–201. http://doi.org/10.1016/j.enggeo.2004.07.010
Lee, Y.-J., Choi, J.-H., Lee, H.-G., & Ha, T.-H. 2013. Electrokinetic Remediation of Saline Soil Using Pulse Power. Environmental Engineering Science, 30(3): 133–141. http://doi.org/10.1089/ees.2012.0118
Lee, Y.-J., Choi, J.-H., Lee, H.-G., Ha, T.-H., & Bae, J.-H. 2012. Effect of Electrode Materials on Electrokinetic Reduction of Soil Salinity. Separation Science and Technology, 47(1), 22–29. http://doi.org/10.1080/01496395.2011.607205
Luo, Q. ., Zhang, X. ., Wang, H., & Qian, Y. 2004. The migration and its mechanism of phenolic contaminants in soil by electrokinetics. China Environmental Science, 24(2): 134–138.
Mahjoory, R. a. 1979. The Nature and Genesis of Some Salt-Affected Soils in Iran1. Soil Science Society of America Journal. http://doi.org/10.2136/sssaj1979.03615995004300050041x
Mattson, E. D., Bowman, R. S., & Lindgren, E. R. 2002. Electrokinetic ion transport through unsaturated soil: 1. Theory, model development, and testing. Journal of Contaminant Hydrology, 54(1-2), 99–120. http://doi.org/10.1016/S0169-7722(01)00144-9
Mohamed-el-hassan, E., & Shang, J. Q. 2003. Electrokinetics-generated pore fluid and ionic transport in an offshore calcareous soil. Canadian Geotechnical Journal, 40(6), 1185–1199. http://doi.org/10.1139/t03-060
Ou, C. Y., Chien, S. C., & Wang, Y. G. 2009. On the enhancement of electroosmotic soil improvement by the injection of saline solutions. Applied Clay Science, 44(1-2): 130–136. http://doi.org/10.1016/j.clay.2008.12.014
Pillay, a. E., Williams, J. R., El Mardi, M. O., Hassan, S. M., & Al-Hamdi, A. 2005. Boron and the alternate-bearing phenomenon in the date palm (Phoenix dactylifera). Journal of Arid Environments, 62(2): 199–207. http://doi.org/10.1016/j.jaridenv.2004.11.007
Reddy, K. R., & Cameselle, C. 2009. Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater. Electrochemical Remediation Technologies for Polluted Soils, Sediments and Groundwater. http://doi.org/10.1002/9780470523650
Reddy, K. R., & Saichek, R. E. 2004. Enhanced electrokinetic removal of phenanthrene from clay soil by periodic electric potential application. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering, 39(5): 1189–1212. http://doi.org/10.1081/ESE-120030326
Sah, J. G., & Chen, J. Y. (1998). Study of the electrokinetic process on Cd and Pb spiked soils. In Journal of Hazardous Materials, 58: 301–315. http://doi.org/10.1016/S0304-3894(97)00140-4
Sun, T. R., & Ottosen, L. M. (2012). Effects of pulse current on energy consumption and removal of heavy metals during electrodialytic soil remediation. In Electrochimica Acta, 86: 28–35. Elsevier Ltd. http://doi.org/10.1016/j.electacta.2012.04.033
Tahmasbian, I. 2012. Soil electerokinetic remediation and its effects on soil microbial activity- A review. African Journal of Microbiology Research, 6(10): 2233–2238. http://doi.org/10.5897/AJMR11.967
Turer, D., & Genc, a. (2005). Assessing effect of electrode configuration on the efficiency of electrokinetic remediation by sequential extraction analysis. Journal of Hazardous Materials, 119(1-3), 167–174. http://doi.org/10.1016/j.jhazmat.2004.12.003
Virkutyte, J., Sillanpää, M., & Latostenmaa, P. 2002. Electrokinetic soil remediation - Critical overview. Science of the Total Environment, 289(1-3): 97–121. http://doi.org/10.1016/S0048-9697(01)01027-0
Xu, H., Chen, W., Wang, C., Chen, B., & Yang, J. 2012. An enhanced electrokinetic remediation of saline lands by sludge layer. Journal of Food, Agriculture and Environment, 10(1): 709–713.
Yeung, A. T. 2011. Milestone developments, myths, and future directions of electrokinetic remediation. Separation and Purification Technology, 79(2): 124–132. http://doi.org/10.1016/j.seppur.2011.01.022
Yuan, S., Wu, C., Wan, J., & Lu, X. 2009. In situ removal of copper from sediments by a galvanic cell. Journal of Environmental Management, 90(1): 421–427. http://doi.org/10.1016/j.jenvman.2007.10.009