Digital Soil Mapping of Soil Classes in Floodplain and Low Relief Lands (Case Study: Hirmand County)
Subject Areas : Farm water management with the aim of improving irrigation management indicatorsMohammad Reza Pahlavan Rad 1 , Seyed Javad Forghani 2 , Mehrdad Esfandyari 3 , Ali Mohammadi Torkashvand 4
1 - Areeo
2 - Department of Soil Science, Science and Research Branch, Islamic Azad University
3 - Department of Soil Science, Science and Research Branch, Islamic Azad University
4 - Department of Soil Science, Science and Research Branch, Islamic Azad University
Keywords: environmental variables, WRB classification, Digital soil mapping, Boosted regression tree,
Abstract :
This study was conducted in order to digital mapping soil classes according to WRB system was conducted by boosted regression tree (BRT) method on about 60.000 hectares of Hirmand county lands. 108 soil profiles were dug and soil profiles were sampled and described based on WRB system. Twenty environmental covariates were used as estimators for soil mapping including terrain attributes and remote sensing covariates. Results showed that the young soil covered the study area and mostly influenced by flood sediment which classified as Fluvisol and Cambisol groups and Solonchak group in salt -affected area. The variable importance showed that the environmental attributes such as Multi-resolution Valley Bottom Flatness Index (MrVBF), Valley Depth, Convergence Index, Catchment Area and Salinity Index (NDSI) had the highest importance among all covariates for two levels of WRB prediction. The validation results showed that the BRT model could predict WRB1 and WRB2 levels with overall accuracy of 47 and 25%, respectively, and also from WRB1 to WRB2 levels the accuracy decreased. In low relief area and young soil that the low soils variability, digital soil mapping approach could be useful, efficient, and fast technique to produce and predict soil classes map.
خاوران، م. 1351. گزارش خاکشناسی نیمه تفصیلی اراضی دشت گلمیر زابل. موسسه خاک شناسی وحاصلخیزی خاک. نشریه شماره 328، وزارت کشاورزی و منابع طبیعی.
ریاحی. ا. 1356. مطالعات خاکشناسی نیمه تفضیلی منطقه آذر سیستان. استان سیستان وبلوچستان. موسسه خاک شناسی وحاصلخیزی خاک. نشریه شماره 505، وزارت کشاورزی و منابع طبیعی.
میرک-زهی. خ.، شهریاری. ع.، پهلوانراد. م.، بامری. الف. 1396. کاربرد روش درختان تصمیمگیری تصادفی در پیشبینی کلاسهای خاک در اراضی با پستی و بلندی کم (مطالعه موردی: شهرستان هیرمند). مجله پژوهشهای حفاظت آب و خاک, 24, 67-84.
Abeare, S. 2009. Comparisons of boosted regression tree, GLM and GAM performance in the standardization of yellowfin tuna catch-rate data from the Gulf of Mexico lonline [sic] fishery.
Adhikari, K., Hartemink, A. E., Minasny, B., Kheir, R. B., Greve, M. B. and Greve, M. H. 2014. Digital mapping of soil organic carbon contents and stocks in Denmark. PLoS One, 9, e105519.
Barthold, F. K., Wiesmeier, M., Breuer, L., Frede, H.-G., Wu, J. and Blank, F. B. 2013. Land use and climate control the spatial distribution of soil types in the grasslands of Inner Mongolia. Journal of Arid Environments, 88, 194-205.
Bauer, E. and Kohavi, R. 1999. An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine learning, 36, 105-139.
Behrens, T., Zhu, A.-X., Schmidt, K. and Scholten, T. 2010. Multi-scale digital terrain analysis and feature selection for digital soil mapping. Geoderma, 155, 175-185.
Brus, D., Kempen, B. and Heuvelink, G. 2011. Sampling for validation of digital soil maps. European Journal of Soil Science, 62, 394-407.
Debella-Gilo, M. and Etzelmüller, B. 2009. Spatial prediction of soil classes using digital terrain analysis and multinomial logistic regression modeling integrated in GIS: Examples from Vestfold County, Norway. Catena, 77, 8-18.
Dobos, E. 2006. Digital Soil Mapping: As a Support to Production of Functional Maps, Office for Official Publication of the European Communities.
Dobos, E., Montanarella, L., Nègre, T. and Micheli, E. 2001. A regional scale soil mapping approach using integrated AVHRR and DEM data. International Journal of Applied Earth Observation and Geoinformation, 3, 30-42.
Elith, J., Leathwick, J. R. and Hastie, T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813.
Fleiss, J. L., Cohen, J. and Everitt, B. 1969. Large sample standard errors of kappa and weighted kappa. Psychological bulletin, 72, 323.
Friedman, J., Hastie, T. and Tibshirani, R. 2000. Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics, 28, 337-407.
Garosi, Y., Sheklabadi, M., Conoscenti, C., Pourghasemi, H.R., Van Oost, K., 2019. Assessing the performance of GIS-based machine learning models with different accuracy measures for determining susceptibility to gully erosion. Science of The Total Environment 664, 1117-1132.
Grinand, C., Arrouays, D., Laroche, B. and Martin, M. P. 2008. Extrapolating regional soil landscapes from an existing soil map: sampling intensity, validation procedures, and integration of spatial context. Geoderma, 143, 180-190.
Grunwald, S. 2009. Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 152, 195-207.
Grunwald, S. 2010. Current state of digital soil mapping and what is next. In: Digital Soil Mapping. Springer, pp. 3-12.
Hassink, J. 1992. Effects of soil texture and structure on carbon and nitrogen mineralization in grassland soils. Biology and Fertility of Soils, 14, 126-134.
Hengl, T., Heuvelink, G. B., Kempen, B., Leenaars, J. G., Walsh, M. G., Shepherd, K. D., Sila, A., MacMillan, R. A., de Jesus, J. M. and Tamene, L. 2015. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS One, 10, e0125814.
Hengl, T., Toomanian, N., Reuter, H. I. and Malakouti, M. J. 2007. Methods to interpolate soil categorical variables from profile observations: Lessons from Iran. Geoderma, 140, 417-427.
IUSS working groupWRB, 2014.World reference base for soil resouces 2014. International Soil Classification SYSTEM for Naming Soils and Creating Legends for Soil Maps,Word Soil Resources Reports No. 106FAo, Rome.
Jafari, A., Ayoubi, S., Khademi, H., Finke, P. and Toomanian, N. 2013. Selection of a taxonomic level for soil mapping using diversity and map purity indices: a case study from an Iranian arid region. Geomorphology, 201, 86-97.
Jafari, A., Finke, P., Vande Wauw, J., Ayoubi, S. and Khademi, H. 2012. Spatial prediction of USDA‐great soil groups in the arid Zarand region, Iran: comparing logistic regression approaches to predict diagnostic horizons and soil types. European Journal of Soil Science, 63, 284-298.
Jafari, A., Khademi, H., Finke, P. A., Van de Wauw, J. and Ayoubi, S. 2014. Spatial prediction of soil great groups by boosted regression trees using a limited point dataset in an arid region, southeastern Iran. Geoderma, 232, 148-163.
Martin, M., Wattenbach, M., Smith, P., Meersmans, J., Jolivet, C., Boulonne, L. and Arrouays, D. 2010. Spatial distribution of soil organic carbon stocks in France: Discussion paper. Biogeosciences Discussions.
McBratney, A. B., Santos, M. M. and Minasny, B. 2003. On digital soil mapping. Geoderma, 117, 3-52.
Mirakzehi, K., Pahlavan-Rad, M. R., Shahriari, A. and Bameri, A. 2018. Digital soil mapping of deltaic soils: A case of study from Hirmand (Helmand) river delta. Geoderma, 313, 233-240.
Oberthür, T., Dobermann, A. and Neue, H. 1996. How good is a reconnaissance soil map for agronomic purposes? Soil use and management, 12, 33-43.
Pahlavan-Rad, M.R., Akbarimoghaddam, A., 2018. Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran). Catena 160, 275-281.
Pahlavan Rad, M., Toomanian, N., Khormali, F., Brungard, C. W., Komaki, C. B. and Bogaert, P. 2014. Updating soil survey maps using random forest and conditioned Latin hypercube sampling in the loess derived soils of northern Iran. Geoderma, 232, 97-106.
Schaetzl, R. and Anderson, S. 2005. Soils, paleosols, and environmental reconstruction. Soils: Genesis and Geomorphology, 632-641.
Schillaci, C., Acutis, M., Lombardo, L., Lipani, A., Fantappie, M., Märker, M. and Saia, S. 2017. Spatio-temporal topsoil organic carbon mapping of a semi-arid Mediterranean region: The role of land use, soil texture, topographic indices and the influence of remote sensing data to modelling. Science of The Total Environment, 601, 821-832.
Scull, P., Franklin, J., Chadwick, O. A. and McArthur, D. 2003. Predictive soil mapping: a review. Progress in Physical Geography: Earth and Environment, 27, 171-197.
Stum, A. K., Boettinger, J., White, M. and Ramsey, R. 2010. Random forests applied as a soil spatial predictive model in arid Utah. In: Digital soil mapping. Springer, pp. 179-190.
Wang, D. and Laffan, S. 2009. Characterisation of valleys from DEMs. In: Proceedings of 18th World IMACS/MODSIM Congress. IMACS, MSSANZ. Cairns, pp. 2014-2020.
Whiteway, T. G., Laffan, S. W. and Wasson, R. J. 2004. Using sediment budgets to investigate the pathogen flux through catchments. Environmental management, 34, 516-527.
Zeraatpisheh, M., Ayoubi, S., Jafari, A. and Finke, P. 2017. Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran. Geomorphology, 285, 186-204.
Zeraatpisheh, M., Ayoubi, S., Brungard, C.W., Finke, P., 2019a. Disaggregating and updating a legacy soil map using DSMART, fuzzy c-means and k-means clustering algorithms in Central Iran. Geoderma 340, 249-258.
Zeraatpisheh, M., Ayoubi, S., Jafari, A., Tajik, S., Finke, P., 2019b. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 338, 445-452.
Ziadat, F. M. 2007. Land suitability classification using different sources of information: Soil maps and predicted soil attributes in Jordan. Geoderma, 140, 73-80.
_||_