Pixel Based Classificatrion Analyisis of Land Use Land Cover in Tarom Basin
Subject Areas : Farm water management with the aim of improving irrigation management indicatorsseyed behrouz Hosseini 1 , Ali Saremi 2 * , Mohammad hossein Noori Gheydari 3 , Hossein Sedghi 4 , Alireza Firoozfar 5 , Jaefar Nikbakht 6
1 - Ph.D candidate, Islamic Azad university, science and research branch, Tehran. iran
2 - assistant Professor, Department of Water Science and Engineering, Islamic Azad University,Science and Research Branch, Tehran, Iran
3 - assistant Professor, department of Water Engineering, Faculty of Science, Zanjan Branch of Islamic Azad University, Zanjan, Iran
4 - Professor in Department of Water engineering, Islamic Azad university, Science and research branch, Tehran, Iran
5 - assistant Professor, Department of Civil engineering, University of Zanjan, Iran.
6 - Associate Professor, Department of Water Engineering, University of Zanjan, Iran.
Keywords: Maximum Likelihood Method, LANDSAT 8, Tarom Basin, Supervised Classification,
Abstract :
The comprehensive management of a watershed requires basic information such as land use and land cover. The aim of this study is to conduct accuracy analyses of LULC classifications derived from Landsat-8 data, and to reveal that which kind of land use and land cover can be estimated more accurately. Tarom Basin and its near surrounding was selected as study area for this case study. Landsat-8 the data, acquired on 8 August 2017, were utilized as satellite imagery in the study. The RGB and NIR bands were used for classification. Required pre-processing and control of georeferenced of images were performed. After performing the required atmospheric corrections, using the FLAASH algorithm, classification maps were generated. LULC images were generated using 3 pixel-based supervised classification method method, Maximum Likelihood (MLC), Support Vector Machine (SVM) and Artificial Neural Network (ANN). As a result of the accuracy assessment, kappa statistics and overall accuracy for MLC method were 0.88 and 91.55 respectively. The obtained results showed that Landsat-8 OLI data, presents satisfying LULC images in water body, mountain and rock, bare land, Vegetation and forest classes. In addition, according to the obtained results, it can be stated that all three methods of classification in a region with heterogeneous (in terms of elevation elevation between 280 and 3000 m and land use and variety of vegetation) Such Tarom, can have good results. Among these methods, Classification with MLC method, had higher speed and lower complexity for execution, than two other methods in achieving the required maps.
باقری، ح. و اسماعیلی، ا .1394. استفاده از الگوریتم FireFly در بهبود طبقه بندی تصاویر ماهواره ای ASTER. همهایش ملی ژئوماتیک، برگزار کننده سازمان نقشه برداری کشور، سازمان برنامه و بودجه کشور. دانشگاه آزاد اسلامی تهران ، ایران.
تراهی، ع. ا.، فیروزی نژاد، م. و عبدالخانی،ع. 1396. ارزیابی عملکرد الگوریتم های ماشین بردار پشتیبان حداکثر احتمال در تهیه نقشه کاربری اراضی جنگل های رودخانه ای با استفاده از سنجنده OLI (منطقه مورد مطالعه: جنگل های رودخانه ای مارون بهبهان. مجله سنجش از دور GIS ایران ، 9(1): 49-62.
تقوی مقدم، ا.، بهرامی، ش. و اکبری، ا .1395. مقایسه دو روش حداکثر احتمال و شبکه عصبی مصنوعی در ارزیابی تغییرات سطح جنگل های حراء با استفاده از تصاویر ماهواره ای لندست در منطقه حفاظت شده گاندو استان سیستان و بلوچستان. نشریه پژوهش های علوم و فناوری چوب و جنگل، 23(1): 23-48.
خسروانی، ز، خواجه الدین، س. ج. ا، سفیانیان، ع. ر.، محبی، م. و پارسامهر، ا.ح .1390. پهنه بندی کاربری اراضی منطقه شرق اصفهان با استفاده از تصاویر ماهواره ای IRS-P6. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، 16(59): 233-244.
رضائی مقدم، م.ح.، اندریانی، ص.، ولی زاده کامران ، خ. ش الماس پور، ف.1395. تعیین بهترین الگهوریتم استخراج کاربری و پوشش اراضی و کشف تغییرات از تصاویر ماهواره ای لندست (مطالعه موردی: حوضه صوفی چای مراغه). فصلنامه علمی-پژوهشی فضای جغرافیایی، 16 (55): 65-85.
سلمان ماهینی،ع. ا.، نادعلی، آ.، فقهی،ج. و ریاضی، ب .1391. طبقه بندی مناطق جنگلی استان گلستان به روش حداکثر احتمال با استفاده ازتصاویر ماهواره ای + ETM سال 2001. علوم ش تکنولونی محیط زیست، 14(3): 47-56.
شنانی هویزه، س. م. و زارعی، ح .1395. بررسی تغییرات کاربری اراضی طی دو دهه دوره زمانی (مطالعه موردی: حوزه آبخیز ابوالعباس). پرسشنامه مدیریت حوزه آبخیز، 7(14): 237-244.
طاهری، ا.، رهنما، م. ر، خوارزمی، ا. ع. و خاکپور، ب .1397. بررسی و پیش بینی تغییرات کاربری اراضی با استفاده از داده های ماهواره ای چندزمانۀ شهر شاندیز (طی سال های 1379-1394). جغرافیا و توسعه، 50: 127-142.
علوی پناه، س.ک و مسعودی. م. 1375. تهیه نقشه کاربری اراضی با استفاده از داده های رقومی مهاهواره ای لندست و سیستم اطلاعات جغرافیایی در مطالعه موردی موک استان فارس. مجله علوم و فنون کشاورزی و منابع طبیعی، 7(1): 65-76.
علوی پناه، ک. 1389. کاربرد سنجش از دور در علوم زمین. تهران ، انتشارات دانشگاه تهران، ص 496.
فاطمی، ب. ش رضایی، ی. 1391. مبانی سنجش از دور. تهران، انتشارات آزاده.
فیضی زاده، ب.، عزیزی، ح. و ولیزاده، ک. 1386. استخراج کاربری های اراضی شهرستان ملکهان با استفاده از تصاویر ماهواره ای لندست 7. مجله آمایش، 2(3): 1-10.
محمدی، ح. و احمدیان، ر. 1384. بافت شناسی روستایی کشور: معیارهای عام شکل گیری عناصر کالبدی روستایی، انتشهارات بنیاد مسکن انقلاب اسلامی.
محمدی، ح.، زینانلو، ع. ا. و روشن،ع. ا.1387. مدل سازی سازگاری دمایی زیتون در ایران. پژوهش های جغرافیایی، 64: 37-51.
مهدوی، ر.، عوضی دختک، ا. ع.، غلامی، ح. و کمالی،ع . ر .1396. شناسایی مناطق برداشت رسوبات بادی با استفاده از سه الگوریتم حداکثر شباهت، حداقل فاصله و متوازی السطوح (مطالعه موردی: شهرستان رودبارجنوب- استان کرمان). فصلنامه علمی-پژوهشی تحقیقات مرتع و بیابان ایران، 24(3): 610-622.
نجفی، ا.، عزیزی قلاتی، س. و مختاری، م. ح. 1396. کاربرد ماشین بردار پشتیبان در طبقه بندی کاربری اراضی حوزه چشمه کیله- چالکرود. پژوهشنامه مدیریت حوزه آبخیز، 8(15): 92-101.
نجفیان ، ط.، رنجبر، ح.ا.، ش فتحیان پور، ن. 1392. شناسایی دگرسانی های گرمابی مرتبط با کانسارهای مس پورفیری با استفاده از داده های سنجنده ابرطیفی هایپریون. نشریه علمی-پژوهشی مهندسی معدن، 8(18): 37-50.
Abd el-kawy, O.R., Ismail, H.A. and Suliman, A.S. 2011. Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Applied Geography, 31(2): 483-.494
Akar, O. and Güngör, O. 2012. Classification of multispectral images using Random Forest algorithm. Journal of Geodesy and Geoinformation, 1(2): 105-112.
Akyürek, D., Koç, O., Akbaba, E. M. and Sunar, F. 2018. Land use/ Land cover Change Detection Using Multi- Temporal Satellite Dataset: A case StudyIn Istanbul New Airport. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-3/W4, Geo Information for Disaster Management (Gi4DM), 18–21 March, Istanbul, Turkey.
Anderson, J.R., Hardy, E.E., Roach, J.T. and Witer, R.E. 1976. A land use and land cover classification system for use with remote sensor data. USGS Numbered Series, A revision of the land use classification system in Circular 671, Land Cover Institute.
Anderson, G.P., Felde, G.W., Hoke, M.L., Ratkowski, A.J., Cooley, T.W., Chetwynd, J.H., Jr., Gardner, J.A., Adler-Golden, S.M., Matthew, M.W., Berk, A. et al. 2002. MODTRAN4-based atmospheric correction algorithm: FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes). In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII (Proceedings of SPIE); Shen, S.S., Lewis, P.E., Eds.; Society of Photo Optics: Orlando, FL, USA, pp. 65–71.
Badroghnezhad, A., mosazadeh, H., sarli, R and sari mohamad li, H. R. (2017). Geograpical Engineering of Territory, 1(1):102-112.
Bakr, N., Weindorf, D.C., Bahnassy, M.H., Marei, S.M. and El-badawi, M.M. 2010. Monitoring land cover changes in a newly reclaimed area of Egypt using multitemporal Landsat data. Applied Geography, 30(4): 592-605.
Bhaduri, B., Harbor, J., Engel, B.A., and Grove, M. 2000. Assessing watershed-scale, long-term hydrologic impacts of land use change using a GIS-NPS model. Environmental Management, 26(6): 643–58.
Boschetti, L., Stephane, Flasse, p. and Pietro, A. Brivio. 2004. Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: The Pareto Boundary. Remote Sensing of Environment, 91: 280–292.
Brandt, J.S., Haynes, M.A., Kuemmerle, T., Waller, D.M. and Radeloff, V.C. 2013. Regime shift on the roof of the world: alpine meadows converting to shrublands in the southern Himalayas. Biological Conservation, 158: 116–127.
Cetin, M. 2009. A satellite based assessment of the impact of urban expansion around a lagoon. International Journal of Environmental Science and Technology, 6(4): 579–590.
Chen, J., Zhu, X., Vogelmann, J. E., Gao, F. and Jin, S. 2011. A simple and effective method for filling gaps in Landsat ETM? slc-off images. Remote Sensing the Environment, 115(4): 1053–1064.
Cingolani, A.A., Renison, D., Zak, M.R. and Cabido, M.R. 2004. Mapping vegetation in a heterogeneous mountain rangeland using Landsat data: an alternative method to define and classify land-cover units. Remote Sensing of Environment, 92(1): 84–97.
Cortes, C., Vapnik, V. 1995. Support-vector networks. Machine Learning, 20(3): 273–297.
Dixon, B. and Candade, N. 2008. Multispectral land use 2-classification using neural networks and support vector machines: one or the other, or both?, International Journal of Remote Sensing, 29: 1185-1206.
Duarte, D.C.O., Zanetti, J., Junior, J.G. and Medeiros, N.G. 2016. Comparison of supervised classification methods of Maximum Likelihood image, Minimum Distance, Parallelepiped and Neural network in images of Unmanned Air Vehicle (UAV) in Viçosa-MG. Proceedings XVII GEOINFO, November 27-30, Campos do Jord˜ao, Brazil.
Elhag, M. and Boteva, S. 2016. Mediterranean land use and land cover classification assessment using high spatial resolution data. In IOP Conference Series: Earth and Environmental Science, 44(4): 32-42.
EXELIS Inc. 2013. ENVI®5.1 Fast Line-of-Sight Atmospheric Analysis of Hypercubes (FLAASH); EXELIS Inc.: Boulder, CO, USA.
Fohrer, N., Haverkamp, S., Eckhardt, K. and Frede, H.G. 2001. Hydrologic response to Land use changes on the catchment scale, Physics and Chemistry of the Earth, 26(7–:)8 577–582.
Foody, G.M. 2002. Status of land cover classification accuracy assessment. – Remote Sensing the Environment 80(1): 185-.102
Gahegan, M., German, G. and West, G. 1999. Improving Neural Network Performance on the Classification of Complex Geographic Datasets. Geographical Systems, 1: 3-.22
Gutman, G., Huang, C., Chander, G., Noojipady, P. and Masek, J.G. 2013. Assessment of the NASA-USGS global land survey (GLS) datasets. Remote Sensing and Environment. :431 249–.562
Hansen, M.C., Egorov, A., Potapov, P.V., Stehman, S.V., Tyukavina, A., Turubanova, S.A., Roy, D.P., Goetz, S.J., Loveland, T.R., Ju, J., Kommareddy, A., Kovalskyy, V., Forsyth, C. and Bents, T. 2014. Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD). Remote Sensing of Environment, 140: 466–.484
Haykin, S. 1994. Neural Networks; Macmillan College Publishing Company: New York, NY, USA, pp 150.
Hersperger, A.M. and Buergi, M. 2007. Driving Forces of Landscape Change in the Urbanizing Limmat Valley, Switzerland. In Modelling Land-Use Change: Progress and Applications; Koomen, E., Stillwell, J., Bakema, A., Scholten, H.J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 45–.06
Hu, T., Yang, J., Li, X. and Gong, P. 2016. Mapping Urban Land Use by Using Landsat Images and Open Social Data. Remote sensing, 8(151): 1-.81
Hutjes, R.W.A. 1998. Biosphere aspects of the hydrological cycle. Journal of Hydrology, 212-213: 1-.12
Ildormi, A., Nori. H., Naderi, M., Aghabeigi, S. and Zeinvand, H. 2017. Land use Change Prediction using Markov Chain and CA Markov Model (Case Study: Gareen Watershed). Journal of Watershed Management Research, 8(16): 232-240.
Kamusoko, C. and Aniya, M. 2006. Land use/cover change and landscape fragmentation analysis in the bendura district Zimbabwe. Land Degrading and Development, 18: 221-233.
Kavzoglu, T. and Colkesen, I. 2009. A kernel functions analysis for support vector machines for land cover classification. International Journal of Applied Earth Observation, 1: 352-359.
Kreuter, U.P., Harris, H.G., Matlock, M.D. and Lacey, R.E. 2001. Change in ecosystem service values in the San Antonio area, Texas. Ecological Economics, 39: 333–346.
Li, M.H., Tapio, I., Vilkki, J., Ivanova, Z., Kiselyova, T., Marzanov, N., et al. 2007. Genetic structure of cattle populations (Bos Taurus) in northern Eurasia and the neighboring Near Eastern regions: implications for breeding strategies and conservation. Molecular Ecology, 16: 3839–3853.
Lillesand, T.M. and Kiefer, R.W. 2000. Remote sensing and image interpretation. John Wiley and sons, New York.
Ling-Chen, X., P. X. Zhao-Li and Z. Y. Yin. 2006. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing and Environment, 104: 133-146
López-Serrano, P.M., Corral-Rivas, J.J., Díaz-Varela, R.A., Álvarez-González, J.G., López-Sánchez, C.A. 2016. Evaluation of radiometric and atmospheric correction algorithms for aboveground forest biomass estimation using landsat 5 TM data. Remote Sensing, 8: 1–19.
Luna, A. R. and A. R. Cesar. 2003. Land use, land cover changes and costal lagoon surface reduction associated with urban growth in northwest Mexico. Landscape Ecol. 18:159-171.
Manandhar, R., Odeh Inakwu, O. A. and Ancev, T. 2009. Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data Using Post-Classification Enhancement. Remote Sensing, 1: 330-344.
Portela, R. and Rademacher, I. 2001. A dynamic model of patterns of deforestation and their effect on the ability of the Brazilian Amazonia to provide ecosystem services. Ecological Modelling, 143: 115–146.
Rao, S. and Sharma, A. 2013. Cost parameter analysis and comparison of linear Kernel and Hollinger Kernel mapping of SVM on image retrieval and effects of addition of positive images. International Journal of Computer Applications, 73(2): 5–12.
Rojstaczer, S., Sterling, S. M. and Moore, N.J. 2001. Human Appropriation of Photosynthesis Products. Science, 294: 2549-2552.
Rosenfield, G. and Fitzpatrick-Lins, K. 1986. A coefficient of agreement as a measure of thematic classification accuracy. Photogrammetric Engineering and Remote Sensing, 52(2): 223–227.
Rozenstein, O. and Karnieli, A. 2010. Comparison of methods for land-use classification incorporating remote sensing and GIS inputs. –Applied Geography, 31(2): 533-544.
Schmitt-Harsh, M. 2013. Landscape change in Guatemala: driving forces of forest and coffee agroforest expansion and contraction from 1990 to 2010. Applied Geography, 40: 40-50.
Sekertekin, A., Marangoz, M. and Akcin. H. 2017. Pixel Based Classification Analysis of Land Use and Land Cover Using SENTINEL-2 and LANDSAT- 8 Data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-4/W6, 91-93.
Seto, K.C., Woodcock, C.E., Song, C., Huang, X., Lu, J. and Kaufmann, R.K. 2002. Monitoring land use change in the Pearl River Delta using Landsat TM. International Journal of Remote Sensing, 23(10): 1985-.4002
Sun, J., Yang, J., Zhang, C., Yun, W. and Qu, J. 2011. Automatic remotely sensed image classification in a grid environment based on the maximum likelihood method. Mathematical and Computer Modelling, 58(3-4): 573-.185
Tang, Z., Engel, B.A., Pijanowski, B.C. and Lim, K.J. 2005. Forecasting land use change and its environmental impact at a watershed scale. Journal of Environmental Management, 76: 35–.54
Tatem, A.J., Nayar, A. and Hay, S.I. 2006. Scene selection and the use of NASA’s global orthorectified Landsat dataset for land cover and land use change monitoring. International Journal of Remote Sensing. 27: 3073–.8703
Temesgen, H., Nyssen, J., Zenebe, A., Haregeweyn, N., Kindu, M., Lemenih, M. and Haile, M. 2013. Ecological succession and land use changes in a lake retreat area (Main Ethiopian Rift Valley). Journl of Arid Environment, 91: 53–.06
Tso, B. and Mather, P.M. 2009. Classification Methods for Remotely Sensed Data. Chapter 2-3. 2 ed., Taylor and Francis Pub., America.
Turner, B.L., Villar, S.C., et al. 2001. Deforestation in the southern Yucatán peninsular region: an integrative approach. Forest Ecology and Management, 154: 353-.073
Turner, B.L. 2002. Toward Integrated Land-Change Science: Advances in 1.5 Decades of Sustained International Research on Land-Use and Land-Cover Change.” Challenges of a Changing Earth: Proceedings of the Global Change Open Science Conference, Amsterdam, NL, 10-13 July 200.0
Van, T.T., Tran, N.D.H., Bao, H.D.X., et al. 2017. Optical Remote Sensing Method for Detecting Urban Green Space as Indicator Serving City Sustainable Development. Proceedings, 2(140): 1-6.
Vapnik, V.N. 1999. The nature of statistical Learning theory. Second Edition, New York: Springer-Verlag.
Vitousek, P.M., Mooney, H.A., Lubchenco, J., and Melillo, J.M. 1997. Human domination of Earth’s ecosystems: Science, 277: 494–499.
Xie, Y., Sha, Z. and Yu, M. 2010. Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology, 1(1): 9-23.
Young, A. 1998. Land Resources; Now and for the Future. Cambridge University Press, 319 pp.
Zhang, L., Dawas, W.R. and Reece, P.H. 2001. Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources. Research, 37(3): 701-708.
Zhao, B., Kreuter, U.P., Li, B., Ma, Z., Chen, J. and Nakagoshi, N. 2003. An ecosystem service value assessment of land-use change on Chongming Island, China. Land Use Policy, 21: 139-148.
Zomlot, Z., Verbeiren, B., Huysmans, M. and Batelaan, O. 2017. Trajectory analysis of land use and land cover maps to improve spatial–temporal patterns, and impact assessment on groundwater recharge. Journal of Hydrology, 554: 558-.965
_||_