Providing a method for determining the flood producing regions based on the relationship between flooding index and morphometric
Subject Areas : Farm water management with the aim of improving irrigation management indicatorsبهارک معتمدوزیری 1 , Masoumeh Gharib 2 , Hasan Ahmadi 3
1 - عضو هیأت علمی تمام وقت گروه آبخیزداری دانشگاه آزاد اسلامی،واحد علوم تحقیقات تهران
2 - Department of Watershed Management,
Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Department of Watershed Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
Keywords: watershed management, flooding priority, distributed model, flood response unit,
Abstract :
River basin planning is an essential factor for sustainable development and land management. Therefore, sub-basins prioritizing and detecting morphometrically characteristics to identify the hydrological behaviors of watersheds and designing management strategies are very important. The aim of present study is to prioritize the flooding of the basin by distributional method and provide a method for determining the flood generating areas in the Tangrah watershed. To this end, the inputs of the rainfall-runoff model were extracted and then the model was calibrated and validated. For this purpose, the inputs of the rainfall-runoff model were extracted and then modclark model calibrated and validated. In the next step, in order to determine the flooding of homogeneous units and sub-basins with unit flood response method, sequential removal and replacement of these units and simulation of flood hydrographs for designed rainfall were carried out at the Golestan National Park's rain gauge station. Then the effect of each homogeneous unit and sub-basin on the total output hydrograph in the watershed was calculated. Finally, for a flood with a return period of 50 years and 100 years for non-statistical watersheds, a correlated multivariable correlation between morphometric parameters and flood index was presented. The results of the potential runoff production map with the return period of 50 and 100 years showed that the runoff production potential was upward downstream of the basin, and the homogeneous unit 116 was recognized as the most effective unit in the high runoff potential, which is due to more rainfall as well as The steep slope and high (CN) in this homogeneous unit, the runoff production potential is nearer the outlet of the basin than the upstream areas. The results of this study showed that by integrating the GIS and hydrologic models, we can investigate the interaction of physiographic and climatic factors on the spill potential of watersheds. Considering the peak synchronization and the flood roughing role in the rivers, prioritized sub-areas as desired
الوانکار، س. ر.، ثقفیان، ب. و صدقی، ح. 1385. بررسی تأثیر توان تفکیک مکانی یک مدل هیدرولوژیک در شبیهسازی دبی اوج سیل. مجله علمی-پژوهشی علوم کشاورزی، 12 (2): 345-329.
بدری، ب.، زارعبیدکی، ر.، هنربخش، ا. و آتشخوار، ف. 1395. اولویتبندی زیر حوزههای آبخیز بهشت آباد از نظر پتانسیل سیلخیزی. پژوهشهای جغرافیای طبیعی، 48 (1): 158-143.
چیداز، آ.، محسنی ساروی، م. و وفاخواه، م. 1388. ارزیابی مدل HEC-HMS بهمنظور برآورد آبنمود سیلاب در حوزه آبخیز کسیلیان. مجله پژوهشهای آبخیزداری (پژوهش و سازندگی)، 22 (3): 71-59.
رحمتی، ا. طهماسبیپور، ن. و پورقاسمی، ح. ر. 1394. اولویتبندی سیلخیزی زیرحوزههای آبخیز استان گلستان بر اساس آنالیز مورفومتریک و همبستگی آماری. مجله علمی-پژوهشی اکوهیدرولوژی، 2 (2): 161-151.
رضایی، م.، وفاخواه، م. و قرمزچشمه، ب. 1395. تغییرپذیری مکانی سیلخیزی با استفاده از روش عکسالعمل سیل واحد در حوزه آبخیز خانمیرزا. نشریه علمی-پژوهشی مهندسی و مدیریت آبخیز، 8 (1): 150-139.
سلیمانیساردو، ک.، بشیرگنبد، م.، موسوی، س.ر. و خلیقی، ش. 1387. پتانسیل تولید سیل در حوزههای آبخیز با استفاده از مدل HEC-HMS در محیط سامانه اطلاعات جغرافیایی (مطالعه موردی: حوضه معرف کسیلیان). پژوهشهای جغرافیای طبیعی، (65): 60-51.
علیزاده، ا. 1390 . اصول هیدرولوژی کاربردی، انتشارات دانشگاه امام رضا، 912 ص.
قنواتی، ع. ا.، صفاری، ا.، بهشتیجاوید، ا. و منصوریان، ا. 1393. پهنهبندی پتانسیل سیلخیزی با استفاده از تلفیق مدل هیدرولوژیکی CN و AHP در محیط GIS، مطالعه موردی: حوضه رودخانه بالخلو. فصلنامه جغرافیای طبیعی، 7 (25): 80-67.
موغلی، مرضیه. 1394. اولویتبندی سیلخیزی واحدهای آبشناسی حوزه آبخیز دالکی با استفاده از شبیهسازی HEC-HMS، پژوهشهای ژئوموفولوژی کمی، 3 (4): 103-90.
Bakhtyarikia, M., Pirasteh, S., Pradhan, B., Mahmud, A. R. Sulaiman, W. N. A. and Moradi, A. 2012. An Artificial Neural Network Model for Flood Simulation Using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences, 67 (1): 251-264. doi:10.1007/s12665-011-1504-z.
Foody, G. M., Ghoneim, E. M. and Arnell, N. W. 2004. Predicting Locations Sensitive to Flash Flooding in an Arid Environment. Journal of Hydrology, 292(1-4): 48-58. doi: 10.1016/j.jhydrol.2003.12.045.
Ghavidelfar, S., Alvankar, S. R. and Razmkhah, A. 2011. Comparison of the Lumped and Quasi-distributed Clark Runoff Models in Simulating Flood Hydrographs on a Semi-arid Watershed. Water Resources Management, 25(6): 1775-1790. doi 10.1007/s11269-011-9774-5.
Jiang, Y., Liu, Ch., Li, X., Liu, L. and Wang, H. 2015. Rainfall-runoff modeling, parameter estimation and sensitivity analysis in a semiarid catchment. Environmental Modelling and Software, 67: 72-88.
Jongman, B., Hochrainer-Stigler, S., Feyen, L., Aerts, J. C., Mechler, R., Botzen, W.W., Bouwer, L. M., Pflug, G., Rojas, R. and Ward, P.J. 2014. Increasing stress on disaster-risk finance due to large floods. Nat. Clim. Change, 4 (4): 264–268.
Kull, D.W. and Feldman, A. D. 1998. Evaluation of Clark’s unit graph method to spatially distributed runoff. Journal of Hydrologic Engineering, ASCE, 3(1): 9-19.
Li, T.and Gao, Y. 2016. Runoff and Sediment Yield Variations in Response to Precipitation Changes, Water, 7, 5638-5656. نام کامل مجله
Linde, A. H., Aerts, J. C. J. H., Hurkmans, R. T. W. L. and Eberle, M. 2008. Comparing Model Performance of two Rainfall-Runoff Models in the Rhine Basin Using Different Atmospheric Forcing Data Sets, Hydrology and Earth System Sciences, 12: 943-957.
Paudel, M., Nelson, E. J. and Scharffenberg, W. 2009. Comparision of Lumped and quasi-distributed Clark Runoff Models using the SCS Curve Number Equation, Journal of Hydrology Engineering, ASCE, 34(3): 1098-1106. Doi: 10.1061/ASCE_HE.1943-5584.0000100.
Pilgrim, D. H. and Cordery, I.1975. Rainfall Temporal patterns for design floods. Journal of the Hydraulics Division, 101(1): 81-95.
Saghafian, B., Julien, P. Y. and Rajaie, H. 2002. Runoff hydrograph simulation based on Time Variable Isochrones Technique, Journal of Hydrology, 261: 193-203.
Saghafian, B. and Khosroshahi, M. 2005. Unit response approach for priority determination of flood source areas. Journal of Hydrology Engineering, ASCE, 10(4): 270-277, doi: 10.1061/(ASCE)1084-0699.
Saghafian, B., Ghermezcheshmeh, B. and Kheirkhah, M. M. 2010. Iso-Flood severity mapping: a New Tools for Distributed Flood Source Identification. Natural Hazards, 55(2): 557-570. doi: 10.1007/s11069-010-9547-0.
Saghafian, B., S. Noroozpour, M. Kiani, and A. Rafiee Nasab. A. 2016. coupled Modclark-curve number rainfall-runon-runoff model. Arabian Journal of Geosciences, 9 (4) (2016): 277, 2-13, DOI 10.1007/s12517-015-2295-4.
Shabanlou, S. and Rajabi, A. 2012. Comparison of Estimated Flood Hydrographs using Lumped and distributed models, Journal of Environmental Research and Development, 7(1): 79-87.
Shabanlou, S. 2014. Calculation of flood hydrograph for Karun Basin by different methods. Agricultural Communications, 2(2): 54-61.
Shafapour-Tehrany, M., Pradhan, B. and Jebur, M. N. 2013 Spatial prediction of flood susceptible areas using rule based decision Tree (DT) and a Novel Ensemble Bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504: 69-79. https:// doi.org/ 10.1016\j. jhydrol. 2013. 09.034.
Szilagyi, J., Balinet, G., Gouzer, B. and Bartha, P. 2005. Flow routing with unknown rating curves using a state-space reservoir-cascade-type formulation. Journal of Hydrology, 311: 219-229.
Viessman, W., Harbaugh, T. E. and Knapp, J. W. 1972. Introduction to hydrology. Index Educational, 415 pages.
Vittala, S. S., Govindaiah, S. and Gowda, H. H. 2008. Prioritization of sub-watersheds for sustainable development and management of natural resources: an integrated approach using remote sensing, GIS and socio-economic data. Current Science, 95 (3): 345-354.
Wanielista, M. P. 1990. Hydrology and water quantity control, John Wiley & Sons, Inc, 565p.
Young, Ch. Ch., Liu, W. Ch. and Wu, M. Ch. 2017. A physically based and machine learning hybrid approach for accurate rainfall-runoff modeling during extreme typhoon events. Applied Soft Computing, 53: 205-216
_||_