Studying the effects of two different biochars on soil water repellency
Subject Areas : Farm water management with the aim of improving irrigation management indicatorsAli Yazdanpanahi 1 , Khaled Ahmadaali 2 * , salman zare 3 , Mohammad Jafari 4
1 - ) MSc student in Management of Desert Areas, University of Tehran, Iran
2 - Assistant Professor, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
3 - Assistant Professor, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
4 - Professor, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
Keywords: Water Repellency, WDPT, Natural Biochar, Infiltration,
Abstract :
Water repellency is one of the important physical properties of soil that affects the soil moisture curve, hydraulic conductivity, and so on. The aim of present study is to investigate the effects of adding natural and artificial biochars on water repellency and some other physical and chemical properties of soil. This study was conducted in factorial design with various levels of additives (natural and waste compost biochars) in a randomized complete block design in three repetitions. The considered factors are natural biochar in four levels (0, 1, 3 and 5%) and municipal waste compost biochar in four levels (0, 1, 3 and 5%) with the total of 16 treatments. The water repellency of natural and municipal waste compost biochar was measured by means of the water drop penetration time (WDPT) test and the actual time required for infiltration ( ) was recorded for each 16 treatments. The results showed that increasing the percentage of applied biochars increased . The highest amount of belongs to treatments No. 5 and 16 were 156 and 170 s, respectively, which increased by 98 and 99 times in comparison with the control treatment. 12 of 16 treatments were classified as wet table or non-water-repellent soil, one treatment in slightly and three treatment as strongly water repellent soil. In general, it can be said that application of biochars, especially the natural biochar, in terms of water repellency does not cause any infiltration problem. Also, it can be concluded that bulk density had an average decrease rate of 4.3% and organic matter and pH had an average increase of 2.2 and 1.8 percentage respectively.
حسینی، ف.، مصدقی، م.ر.، حاج عباسی، م.ع.، سبزعلیان، م.ر.، سلیمانی، م. و سپهری، م. 1396. تأثیر بقایای گیاه فسکیوی بلند در حضور قارچ اندوفیت (Coenophaila Epichloë) بر آبگریزی و پایداری ساختمان خاکهای با بافت متفاوت، مجله علوم آبوخاک - علوم و فنون کشاورزی و منابع طبیعی، 21 (2)، 82-69.
حسین بیرامی، ح.، نیشابوری، م.ح.، ناظمی، ا.ح. و عباسی، ف. 1394. تأثیر آبگریزی خاک بر مشخصات نفوذ در دو خاک لوم رسی و لوم شنی، نشریه دانش آبوخاک، 25 (2)، 192-181.
درستکار، و. و والی، ر. 1396. بررسی پایداری ساختمان و آبگریزی خاک در پاسخ به افزودن بقایای برگ انگور و پوست انار در سطوح مختلف شوری، مجله علمی کشاورزی مهندسی زراعی، 40 (2)، 46-29.
زلفی باوریان، م.، رونقی, ع. ا.، کریمیان، ن.ع.، قاسمی، ر.، و یثربی، ج. 1395. اثر بایوچار تهیه شده از کود مرغی در دماهای متفاوت بر ویژگیهای شیمیایی یک خاک آهکی، نشریه علوم آبوخاک (علوم و فنون کشاورزی و منابع طبیعی)، 20 (75) ،86-73.
ناظم السادات، ن. 1393. تأثیر استفاده از لجن فاضلاب بر آبگریزی و تبخیر از سطح خاک در دو بافت مختلف. پایاننامه
کارشناسی ارشد. پژوهشکده مهندسی آب، دانشگاه شهرکرد.
یزدان پناهی، ع.، احمدآلی، خ.، جعفری، م. و شعبانی عمران، ت. 1397. اثرات بایوچارهای طبیعی و کمپوست زباله شهری بر پارامترهای هیدرولیکی خاک ماسهبادی، مجله مرتع و آبخیز، 71 (2): 561-555.
.
Abbasi, M. K., & Anwar, A. A. (2015). Ameliorating effects of biochar derived from poultry manure and white clover residues on soil nutrient status and plant growth promotion-greenhouse experiments. PloS one, 10(6), e0131592.
Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., & Wessolek, G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202, 183-191.
Arye, G., Tarchitzky, J., & Chen, Y. (2011). Treated wastewater effects on water repellency and soil hydraulic properties of soil aquifer treatment infiltration basins. Journal of hydrology, 397(1-2), 136-145.
Blanco-Canqui, H., & Lal, R. (2009). Extent of soil water repellency under long-term no-till soils. Geoderma, 149(1-2), 171-180.
Buczko, U., Bens, O., Fischer, H., & Hüttl, R. F. (2002). Water repellency in sandy luvisols under different forest transformation stages in northeast Germany. Geoderma, 109(1-2), 1-18.
Bughici, T., & Wallach, R. (2016). Formation of soil–water repellency in olive orchards and its influence on infiltration pattern. Geoderma, 262, 1-11.
Burguet, M., Taguas, E. V., Cerdà, A., & Gómez, J. A. (2016). Soil water repellency assessment in olive groves in Southern and Eastern Spain. Catena, 147, 187-195.
Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60(3), 393-404.
Crockford, H., Topalidis, S., & Richardson, D. (1991). Water repellency in a dry sclerophyll eucalypt forest—measurements and processes. Hydrological processes, 5(4), 405-420.
DeBano, L. F. (1981). Water repellent soils: a state-of-the-art. Gen. Tech. Rep. PSW-46. Berkeley, Calif.: US Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Exp. Stn. 21 p, 46.
Dekker, L. W. and P. D. Jungerius. 1990. Water repellency in the dunes with special reference to The Netherlands. Catena, Suppl. 18: 173– 183.
Dekker, L. W., & Ritsema, C. J. (1994). How water moves in a water repellent sandy soil: 1. Potential and actual water repellency. Water Resources Research, 30(9), 2507-2517.
Dekker, L. W., & Ritsema, C. J. (1996). Preferential flow paths in a water repellent clay soil with grass cover. Water Resources Research, 32(5), 1239-1249.
Dekker, L. W., Ritsema, C. J., Oostindie, K., & Boersma, O. H. (1998). Effect of drying temperature on the severity of soil water repellency. Soil Science, 163(10), 780-796.
Doerr, S. H. (1998). On standardizing the ‘water drop penetration time’and the ‘molarity of an ethanol droplet’techniques to classify soil hydrophobicity: a case study using medium textured soils. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Group, 23(7), 663-668.
Doerr, S. H., & Thomas, A. D. (2000). The role of soil moisture in controlling water repellency: new evidence from forest soils in Portugal. Journal of Hydrology, 231, 134-147.
Doerr, S. H., Dekker, L. W., Ritsema, C. J., Shakesby, R. A., & Bryant, R. (2002). Water repellency of soils. Soil Science Society of America Journal, 66(2), 401-405.
Doerr, S. H., Shakesby, R. A., & Walsh, R. (2000). Soil water repellency: its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51(1-4), 33-65.
Doerr, S. H., Shakesby, R. A., Blake, W. H., Chafer, C. J., Humphreys, G. S., & Wallbrink, P. J. (2006). Effects of differing wildfire severities on soil wettability and implications for hydrological response. Journal of Hydrology, 319(1-4), 295-311.
Frankenberger, W., Tabatabai, M., Adriano, D., & Doner, H. (1996). Bromine, chlorine, & fluorine. Methods of Soil Analysis Part 3—Chemical methods (methodsofsoilan3), 833-867.
Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis1. Methods of soil analysis: Part 1—Physical and mineralogical methods (methodsofsoilan1), 383-411.
Gerke, H. H., Hangen, E., Schaaf, W., & Hüttl, R. F. (2001). Spatial variability of potential water repellency in a lignitic mine soil afforested with Pinus nigra. Geoderma, 102(3-4), 255-274.
Hallett, P. D., & Gaskin, R. E. (2007, August). An introduction to soil water repellency. In Proceedings of the 8th International Symposium on Adjuvants for Agrochemicals (ISAA2007) (Vol. 6, p. 9). Wageningen: International Society for Agrochemical Adjuvants.
Hallett, P. D., & Gaskin, R. E. (2007, August). An introduction to soil water repellency. In Proceedings of the 8th International Symposium on Adjuvants for Agrochemicals (ISAA2007) (Vol. 6, p. 9). Wageningen: International Society for Agrochemical Adjuvants.
Jex, G. W., Bleakley, B. H., Hubbell, D. H., & Munro, L. L. (1985). High Humidity-induced Increase in Water Repellency in Some Sandy Soils 1. Soil Science Society of America Journal, 49(5), 1177-1182.
Kim, K. H., Kim, J.-Y., Cho, T.-S., & Choi, J. W. (2012). Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresource technology, 118, 158-162.
King, P. M. (1981). Comparison of methods for measuring severity of water repellence of sandy soils and assessment of some factors that affect its measurement. Soil Research, 19(3), 275-285.
Kookana, R. S., Sarmah, A. K., Van Zwieten, L., Krull, E., & Singh, B. (2011). 3 biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances in agronomy, 112(112), 103-143.
Laird, D. A. (2008). The charcoal vision: a win–win–win scenario for simultaneously producing bioenergy, permanently sequestering carbon, while improving soil and water quality. Agronomy journal, 100(1), 178-181.
Lal, R. (2011). Sequestering carbon in soils of agro-ecosystems. Food policy, 36, S33-S39.
Lehmann, J., & Joseph, S. (2015). Biochar for environmental management: science, technology and implementation: Routledge.
Lehmann, J., Gaunt, J., & Rondon, M. (2006). Bio-char sequestration in terrestrial ecosystems–a review. Mitigation and adaptation strategies for global change, 11(2), 403-427.
Letey, J., M. L. K. Carrillo and X. P. Pang. 2000. Approaches to characterize the degree of water repellency. J.
Hydrol. 231/232: 61–65.
Lichner, L., Orfánus, T.O., Nováková, K. A., Šír, M. I., & Tesař, M. I. R. O. S. L. A. V. (2007). The impact of vegetation on hydraulic conductivity of sandy soil. Soil Water Res, 2, 59-66.
Lim, T., Spokas, K., Feyereisen, G., & Novak, J. (2016). Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere, 142, 136-144.
Liyanage, T. D. P., & Leelamanie, D. A. L. (2016). Influence of organic manure amendments on water repellency, water entry value, and water retention of soil samples from a tropical Ultisol. Journal of Hydrology and Hydromechanics, 64(2), 160-166.
Mao, J., Nierop, K. G., Rietkerk, M., Damsté, J. S. S., & Dekker, S. C. (2016). The influence of vegetation on soil water repellency-markers and soil hydrophobicity. Science of the Total Environment, 566, 608-620.
McGhie, D. A., & Posner, A. M. (1980). Water repellence of a heavy textured Western Australian surface soil. Soil Research, 18(3), 309-323.
Miller, J. J., & Curtin, D. (2006). Electrical conductivity and soluble ions. Soil sampling and methods of analysis, 2.
Nelson, D., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter1. Methods of soil analysis. Part 2. Chemical and microbiological properties (methodsofsoilan2), 539-579.
Olsen, S. R. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate: United States Department of Agriculture; Washington.
Regalado, C. M., & Ritter, A. (2005). Characterizing water dependent soil repellency with minimal parameter requirement. Soil Science Society of America Journal, 69(6), 1955-1966.
Rhoades, J. (1996). Salinity: Electrical conductivity and total dissolved solids. Methods of Soil Analysis Part 3—Chemical methods (methodsofsoilan3), 417-435.
Shaver, T. M., Peterson, G. A., & Sherrod, L. A. (2003). Cropping intensification in dryland systems improves soil physical properties: regression relations. Geoderma, 116(1-2), 149-164.
Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Soil Research, 48(7), 516-525.
Song, W., & Guo, M. (2012). Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis, 94, 138-145. doi:https://doi.org/10.1016/j.jaap.2011.11.018
Steiner, C., Teixeira, W. G., Lehmann, J., Nehls, T., de Macêdo, J. L. V., Blum, W. E., & Zech, W. (2007). Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant and soil, 291(1-2), 275-290.
Täumer, K., Stoffregen, H., & Wessolek, G. (2005). Determination of repellency distribution using soil organic matter and water content. Geoderma, 125(1-2), 107-115.
Thomas, G. (1996). Soil pH and soil acidity. Methods of Soil Analysis Part 3—Chemical methods (methodsofsoilan3), 475-490.
Wallis, M. G., Horne, D. J., & McAuliffe, K. W. (1990). A study of water repellency and its amelioration in a yellow-brown sand: 1. Severity of water repellency and the effects of wetting and abrasion. New Zealand Journal of Agricultural Research, 33(1), 139-144.
Whelan, A., Kechavarzi, C., Sakrabani, R., Coulon, F., Simmons, R., & Wu, G. (2010, May). The influence of compost addition on the water repellency of brownfield soils. In EGU General Assembly Conference Abstracts (Vol. 12, p. 2856).
Zavala, L. M., González, F. A., & Jordán, A. (2009). Intensity and persistence of water repellency in relation to vegetation types and soil parameters in Mediterranean SW Spain. Geoderma, 152(3-4), 361-374.
_||_