Selenium nanoparticle-mediated enhancement of plant biochemistry and metabolite enrichment: GC-MS profiling of selenium-enriched sesame seed oil
Subject Areas : Phytochemistry: Isolation, Purification, CharacterizationZohaib Younas 1 * , Ilyas Ahmad 2 , Tayyaba Yousaf 3 , Naveed Iqbal Raja 4 , Zia-ur-Rehman Mashwani 5 *
1 - Department of Botany, PMAS Arid Agriculture University Rawalpindi, 46300 Pakistan
2 - Department of Botany, PMAS Arid Agriculture University Rawalpindi, 46300 Pakistan
3 - Department of Botany, PMAS Arid Agriculture University Rawalpindi, 46300 Pakistan
4 - Department of Botany, PMAS Arid Agriculture University Rawalpindi, 46300 Pakistan
5 - Department of Botany, PMAS Arid Agriculture University Rawalpindi, 46300 Pakistan
Keywords: Characterization methods, Gas chromatography-mass spectrometry (GC-MS), Kyoto encyclopaedia of gene and genomics (KEGG) pathway, Phytochemical parameter, PubChem database, Selenium nanoparticles (SeNPs), Sesamum indicum,
Abstract :
This study explored the impact of selenium nanoparticles (SeNPs) on the biochemistry and seed oil profile of sesame (Sesamum indicum L.). Sesame plants were treated foliarly with varying dosages of SeNPs (10, 20, 30, 40, and 50 mg/L) and 5 mg/L of selenium salt. UV-Visible spectrum indicated a peak absorption at 279 nm for SeNPs, while FTIR analysis confirmed the reduction of sodium selenite to SeNPs using Allium sativum extract. The highest total flavonoid content (TFC) and total phenolic content (TPC) were recorded at 14.72 and 14.24 mg/g, respectively, for the 40 mg/L treatment. Additionally, GC-MS analysis identified thirty-five chemical compounds in sesame seed oil. The Kyoto encyclopaedia of gene and genomics (KEGG) pathway analysis revealed significant metabolite enrichment across eight pathways, particularly in pyruvate metabolism. Overall, SeNPs enhanced the biochemical profile and metabolite detection in sesame seed oil, potentially improving crop yield and stress resilience.
Abd-Allah, W.E., Elsayed, WM., Abdelshafeek, K.A., 2016. Antioxidant activity of chemical constituents from Prunus avium seeds. Der. Pharmacia. Lettre 8(17),19-25.
Ahangari, B., Sargolzaei, J., 2012. Extraction of pomegranate seed oil using subcritical propane and supercritical carbon dioxide. Theor. Found. Chem. Eng. 46(3), 258-265.
Ahmad, I., Younas, Z., Mashwani, Z.U.R., Raja, N.I., Akram, A., 2023. Phytomediated selenium nanoparticles improved physio-morphological, antioxidant, and oil bioactive compounds of sesame under induced biotic stress. ACS Omega 8(3), 3354-3366.
Ahmad, I., Younas, Z., Yousaf, T., Ahmad, A., Vladulescu, C., 2024. Antioxidant activity, metabolic profiling, in-silico molecular docking and ADMET analysis of nano selenium treated sesame seed bioactive compounds as potential novel drug targets against cardiovascular disease related receptors. Heliyon 10(7), 1-19.
Anu, K., Singaravelu, G., Murugan, K., Benelli, G., 2017. Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): Biophysical characterization and cytotoxicity on vero cells. J. Cluster Sci. 28, 551-563.
Bailly, C., 2021. Bioactive biflavonoids from Wikstroemia indica (L.) C.A. Mey. (Thymelaeaceae): A review. Trends Phytochem. Res. 5(4), 190-198.
Bedigian, D., 2013. African origins of sesame cultivation in the Americas. Afr. Eth. Amer. 67-120.
Bianco, A., Venditti, A., Foddai, S., Toniolo, C., Nicoletti, M., 2014. A new problem. Contamination of botanicals by phthalates. Rapid detection tests. Nat. Prod. Res. 28(2), 134-137.
Bu, M., Fan, W., Li, R., He, B., Cui, P., 2023. Lipid metabolism and improvement in oilseed crops: Recent advances in multi-omics studies. Metabolites 13(12), 1170.
Çağırgan, M.İ., 2006. Selection and morphological characterization of induced determinate mutants in sesame. Field Crops Res. 96(1), 19-24.
Chang, C.C., Yang, M.H., Wen, H.M., Chern, J.C., 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10(3), 178-182.
DuBois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.T., Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3), 350-356.
Farhana, S., Aziz, S., Rahman, S., Afrin, S., Bhuiyan, M.N.I., Al-Reza, S.M. 2022. Chemical composition of fixed oil and in vitro antimicrobial activity of Andrographis paniculata root. J. King Saud Univ. Sci. 34(4), 101921.
Goli, S.A.H., Sahri, M.M. Kadivar, M., 2008. Enzymatic interesterification of structured lipids containing conjugated linoleic acid with palm stearin for possible margarine production. Eur. J. Lipid Sci. Technol. 110, 1102-1108.
Hariram, V., Vasanthaseelan, S., 2016. Characterization and identification of FAME’S in canola biodiesel using spectroscopic studies. Int. J. Chem. Sci. 14, 661-670.
Harwood, J.L., 1996. Recent advances in the biosynthesis of plant fatty acids. Biochim. Biophys. Acta Lipids Lipid Metab. 1301(1-2), 7-56.
He, M., He, C.Q., Ding, N.Z., 2018. Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Front. Plant Sci. 9, 1771.
He, M., Qin, C.X., Wang, X., Ding, N.Z., 2020. Plant unsaturated fatty acids: Biosynthesis and regulation. Front. Plant Sci. 11, 390.
Hernández-Hernández, H., Quiterio-Gutiérrez, T., Cadenas-Pliego, G., Ortega-Ortiz, H., Hernández-Fuentes, A. D., Cabrera de la Fuente, M., Juárez-Maldonado, A., 2019. Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants 8(10), 355.
Howlader, M.H.K., Bain, S.K., Hasan, M.M., Khan, A., Biswas, S., 2018. Source-sink manipulation on yield contributing characters and yield of sesame (Sesamum indicum L.). Progress. Agric. 29(1), 1-9.
Husen, A., Siddiqi, K.S., 2014. Plants and microbes assisted selenium nanoparticles: Characterization and application. J. Nanobiotechnology 12(1), 1-10.
Jeng, K.C.G., Hou, R.C.W., 2005. Sesamin and sesamolin: Nature's therapeutic lignans. Curr. Enzyme Inhib. 1(1), 11-20.
Kirillov, V., Stikhareva, T., Atazhanova, G., Mukasheva, F., Yrymgali, M., 2015. Chemical composition of the essential oil of the boreal relict of Pyrola rotundifolia L. from Northern Kazakhstan. J. Oleo Sci. 4(10), 1065-1073.
Kumari, C., Meenatchi, M.P., 2017. GC-MS analysis of phyto-constituents and antimicrobial activity of hexane extract of Lanatana camara Linn. Res. J. Pharmacogn. Phytochem. 9(2), 115-120.
Mohammadhosseini, M., Frezza, C., Venditti, A., Akbarzadeh, A., 2019. Ethnobotany and phytochemistry of the genus Eremostachys Bunge. Curr. Org. Chem. 23, 1828-1842.
Mohammadhosseini, M., Frezza, C., Venditti, A., Sarker, S., 2021. A systematic review on phytochemistry, ethnobotany and biological activities of the genus Bunium L. Chem. Biodivers. 18(11), e2100317.
Mouminah, H. H. 2024. Black seed (Nigella sativa) reduced release of phthalates esters from packing material to prepared cheese. Pharmacogn. Res. 16(2), doi: 10.1016/s0378-8741( 98)00241-4.
Moncayo, S., Cornejo, X., Castillo, J., Valdez, V., 2021. Preliminary phytochemical screening for antioxidant activity and content of phenols and flavonoids of 18 species of plants native to western Ecuador. Trends Phytochem. Res. 5(2), 93-104.
Nurdjannah, N., Bermawie, N., 2012. Handbook of Herbs and Spices. Woodhead Pub. Vol. 1, pp. 197-215.
Ohlrogge, J., Browse, J., 1995. Lipid biosynthesis. Plant Cell 7(7), 957.
Parida, A., Das, A.B., Das, P., 2002. NaCl stress causes changes in photosynthetic pigments, proteins, and other metabolic components in the leaves of a true mangrove, Bruguiera parviflora, in hydroponic cultures J. Plant Biol. 45(1), 28-36.
Pathak, N., Bhaduri, A., Rai, A.K., 2019. Sesame: Bioactive Compounds and Health Benefits. In Bioactive Molecules in Food. 5(1), 181-200.
Peng, L., Qian, L., Wang, M., Liu, W., Song, X., Cheng, H., Zhao, M., 2021. Comparative transcriptome analysis during seeds development between two soybean cultivars. PeerJ 9, e10772.
Pham, T.D., Thi Nguyen, T.D., Carlsson, A.S., Bui, T.M., 2010. Morphological evaluation of sesame ('Sesamum indicum L.) varieties from different origins. Aust. J. Crop. Sci. 4(7), 498-504.
Satgurunathan, T., Bhavan, P.S., Komathi, S., 2017. Green synthesis of selenium nanoparticles from sodium selenite using garlic extract and its enrichment on Artemia nauplii to feed the freshwater prawn Macrobrachium rosenbergii post-larvae. Res. J. Chem. Environ. 21(10), 1-12.
Sattler, S.E., Gilliland, L.U., Magallanes, L.M., Pollard, M., DellaPenna, D., 2004. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16(6), 1419-1432.
Shimoyoshi, S., Takemoto, D., Kishimoto, Y., Amano, A., Sato, A., Ono, Y., Ishigami, A., 2020. Sesame lignans suppress age-related disorders of the kidney in mice. Eur. Rev. Med. Pharmacol. Sci. 24, 5140-5147.
Tamta. G., Mehra, M., Tandon, S., Nand, V., Pant, M., Gouri, V., 2024. A comparative study on the extracts from the fruits of Ficus articulata L.: GC-MS profiling, phytochemical composition, biological activities and in-silico ADMET study. Trend Phytochem. Res. 8(1), 40-56.
Terefe, G., Wakjira, A., Berhe, M., Tadesse, H., 2012. Sesame Production Manual. Ethiopia: Ethiopian Institute of Agricultural Research Embassy of the Kingdom of the Netherlands.
Velioglu, Y., Mazza, G., Gao, L., Oomah, B.D., 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food. Chem. 46(10), 4113-4117.
Vinkovic Vrcek, I., 2018. Selenium nanoparticles: Biomedical applications. Selenium 393-412.
Waheed, A., Hamid, F.S., Madiha, B., Seemab, A., Naveed, A., Nadia, K., Hina, G., 2019. GC-MS analysis of chemical components seed oil of Raphanus sativus L. Moj. Toxicol. 5(3), 112-118.
Wan, Y., Li, H., Fu, G., Chen, X., Chen, F., Xie, M., 2015. The relationship of antioxidant components and antioxidant activity of sesame seed oil. J. Sci. Food Agric. 95(13), 2571-2578.
Waheed, I., ul Haq, M.I., Rasool, S., Javaid, M., Shah, A.A., Aamir, K., ur Rehman, M.K., ur Rehman, M.H., 2024. In-vitro and in-vivo antidiabetic activity of aerial parts of Aitchisonia rosea supported by phytochemical and GC-MS analysis. Pak. J. Pharma Sci. 37(1), 163-171.
Wang, Q., Xu, S., Zhong, L., Zhao, X., Wang, L., 2023. Effects of zinc oxide nanoparticles on growth, development, and flavonoid synthesis in Ginkgo biloba. Int. J. Mol. Sci. 24(21), 15775.
Yemata, G., Bekele, T., 2024. Evaluation of sesame (Sesamum indicum L.) varieties for drought tolerance using agromorphological traits and drought tolerance indices. PeerJ 12, e16840.
Yunus, S.N.M., Zolkeflee, N.K.Z., Jaafar, A.H., Abas, F., 2021. Metabolite identification in different fractions of Ficus auriculata Loureiro fruit using the 1H-NMR metabolomics approach and UHPLC-MS/MS. South African. J. Bot. 138, 348-363.
Zeid, I.M., Gharib, Z.F.A.E., Ghazi, S.M., Ahmed, E.Z., 2019. Promotive effect of ascorbic acid, gallic acid, selenium and nano-selenium on seed germination, seedling growth and some hydrolytic enzymes activity of cowpea (Vigna unguiculata) seedling. J. Plant Physiol. Path. 7, 1, 2.
Zhang, J.Y., Lo, HC., Yang, F.L., Liu, Y.F., Wu, W.M., Chou, C.C., 2021. Plant-based, antioxidant-rich snacks elevate plasma antioxidant ability and alter gut bacterial composition in older adults. Nutrients 13(11), 3872.