Predictive Model presentation for Customer Satisfaction from Software Support Services with Data Mining Approach
Subject Areas : Strategic Management Researchesbabak sohrabi 1 , Iman raeesi 2 , Samaneh Keshavarzi 3
1 - ....
2 - ...
3 - ...
Keywords: Data mining, Classification, Customer Satisfaction, Regression, Customer Satisfaction Model, Software Industry Services. ,
Abstract :
Nowadays, productive or service organizations consider the customer's satisfaction as a significant criterion to assess their work quality. Since almost all the organizations need to compete in different areas including services, giving a high quality service is so important to achieve a permanent competitive advantage. In order to survive in competitive markets, organizations and companies have to provide high quality customer services. The results of many researches illustrate that the service quality is the necessity for customer's satisfaction. Though, a lot of customer oriented companies have problem in recognizing and evaluating the customers' preferences and they often misunderstand the customers' demands. Because providing a high quality service requires understanding the relationship between the demands of customers and the quality of services provided by company. The organizations and companies which give software service also include this rule. The purpose of this research is to present a model to predict the customer's satisfaction from the provided services , also determine the influence of each effective variable on customer's satisfaction, as well be informed of customer's satisfaction level from provided service by the mentioned company. The proposed study used predictive algorithms such as Regression and Classification on data by Rapid Miner. Finally the method with the highest accuracy and minimum error were selected. In addition, in order to determine the most effective variables in customer's satisfaction, the weighting method was used. In order to make decisions and improve customer satisfaction, the results will be available for managers.
جعفری، سید اکبر (1393). بررسی تأثیر کیفیت خدمات بر رضایتمندی مشتریان در بانک قرض الحسنه مهر ایران، کارشناسی ارشد اقتصاد کشاورزی، دانشگاه آزاد اسلامی واحد ارسنجان.
سهرابی، بابک، رئیسی، ایمان، زارع، فائزه (1395). طراحی سیستم توصیهگر بهمنظور بهینهسازی و مدیریت تسهیلات بانکی بر مبنای الگوریتمهای خوشهبندی و طبقهبندی تسهیلات، مجله پژوهشهای نوین در تصمیم گیری، 1(2)، 53-76
صنیعی آباده، محمد، محمودی، سینا، طاهرپرور، محدثه (1394). دادهکاوی کاربردی، تهران: نیاز دانش.
کاوسی، سید محمدرضا، سقائی، عباس (1384). روشهای اندازهگیری رضایت مشتری، تهران: آمه.
محمدی، شبنم، علیزاده، سمیه (1393)، تحلیل مشکلات شعب بانک آینده در سراسر کشور با استفاده از روش دادهکاوی، مدیریت فناوری اطلاعات، 6(2)، ص.333-350
ملکی، آناهیتا، دارابی، ماهان (1387). روشهای مختلف اندازهگیری رضایت مشتری ، ماهنامه مهندسی خودرو و صنایع وابسته، 1(3)
.Breiman, L, Friedman, J. H & Olshen, R. A (2009). Stone, cj (1984). classification and regression trees. Wadsworth, Belmont, California.
Chen, C. K, Shie, A. J & Yu, C. H (2012). A customer-oriented organisational diagnostic model based on data mining of customer-complaint databases. Expert Systems with Applications, 39(1), 786-792.
Cheng, C. H & Chen, Y. S (2009). Classifying the segmentation of customer value via RFM model and RS theory. Expert systems with applications, 36(3), 4176-4184.
Drew, J. H, Mani, D. R, Betz, A. L & Datta, P (2001). Targeting customers with statistical and data-mining techniques. Journal of Service Research, 3(3), 205-219
Garver, M. S (2002). Try new data-mining techniques. Marketing News, 36(19), 31-33
Hsieh, N. C (2004). An integrated data mining and behavioral scoring model for analyzing bank customers. Expert systems with applications, 27(4), 623-633.
Koç, M & Barkana, A (2014). Application of Linear Regression Classification to low-dimensional datasets. Neurocomputing, 131, 331-335.
Kohavi, R (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai, (2)14, 1137-1145.
Larasati, A, DeYong, C & Slevitch, L (2012). The application of neural network and logistics regression models on predicting customer satisfaction in a student-operated restaurant. Procedia-Social and Behavioral Sciences, 65, 94-99.
Larose, D. T (2005). Discovering Knowledge In Data,An Introduction to Data Mining, Canada: John Wiley & Sons, Inc, Hoboken, New Jersey
Lee, S & Park, Y (2007). A prediction model for success of services in e-commerce using decision tree: E-customer’s attitude towards online service. Expert Systems with Applications, 33(3), 572-581
Ngai, E. W, Xiu, L & Chau, D. C (2009). Application of data mining techniques in customer relationship management: A literature review and classification. Expert systems with applications, 36(2), 2592-2602
Reischl, R. M (2011). Data Mining Tools. Data Mining and Knowledge Discovery, 1(5), 431-443.
Rygielski, C, Wang, J. C & Yen, D. C (2002). Data mining techniques for customer relationship management. Technology in society, 24(4), 483-502.
Seong Leem, C & Yoon, Y (2004). A maturity model and an evaluation system of software customer satisfaction: the case of software companies in Korea. Industrial Management & Data Systems, 104(4), 347-354
Shearer, C(2005). The CRISP-DM model: the new blueprint for data mining، J Data Warehousing, 13-22.
Shen, C. C & Chuang, H. M (2009). A study on the applications of data mining techniques to enhance customer lifetime value. WSEAS Transactions on Information Science and Applications, 6(2), 319-328.
Song, Y, Liang, J, Lu, J & Zhao, X (2017). An efficient instance selection algorithm for k nearest neighbor regression. Neurocomputing, 251, 26-34.