The effect of foliar feeding of iron, zinc and manganese nanochelates on chlorophyll fluorescence, iron, zinc and manganese concentration in seeds and soybean yield
Subject Areas :
botany
Mohammad Saeed Vaghar
1
*
1 - Assistant Professor, Department of Agriculture, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
Received: 2022-04-20
Accepted : 2022-06-01
Published : 2022-06-22
Keywords:
Chlorophyll index,
soybean,
Iron,
Mano chelate,
Chlorophyll fluorescence,
Foliar nutrition,
Manganese,
Drought stress,
Zinc,
Abstract :
Objective: Dehydration stress disrupts the balance of absorption and transfer of micronutrients from roots to aerial organs and is a serious threat to agricultural products. This experiment was conducted to investigate the effect of iron, zinc and manganese nano chelate spraying on chlorophyll index, chlorophyll fluorescence, concentration of iron, zinc and manganese elements in seeds and their relationship with soybean yield.Materials and methods: The experiment was carried out in the form of a split plot, in the form of a completely randomized block design with three repetitions in two consecutive years. The main factor of the irrigation regime in the main plot includes stopping irrigation at the stage of flowering, podding, seed filling and full irrigation and the secondary factor of spraying with distilled water (control), iron, zinc, manganese, iron + zinc, iron + manganese, zinc + manganese. And iron + zinc + manganese were in sub-plots.Findings: Drought stress significantly reduced grain yield, which was the largest reduction in podding stage (31.4% reduction compared to the control). The lowest and highest amount of chlorophyll fluorescence was obtained due to stress in the stage of podding and full irrigation. Iron and iron + zinc treatments had the highest chlorophyll fluorescence and chlorophyll index, respectively. The control treatment had the highest and the stress treatment had the lowest concentration of iron, zinc and manganese in the seed during the podding stage.Conclusion: Fertilization of iron, zinc and manganese nanochelates in water deficit conditions is a practical method to reduce chlorophyll fluorescence, increase the content of micronutrients in seeds and seed yield. The combined treatment of iron + zinc was the best treatment.
References:
Assefa Y, Bajjalieh N, Archontoulis S, Casteel S, Davidson D, Kovács P & Ciampitti IA. Spatial Characterization of Soybean Yield and Quality (Amino Acids, Oil, and Protein) for United States, Sci. Rep. 2018; 8(2): 1-11. DOI: 10.1038/s41598-018-32895-0
Armand N, Amiri H & Ismaili A. Interaction of methanol spray and water deficit stress on photosynthesis and biochemical characteristics of Phaseolus vulgaris L. cv. Sadry. Photochem. Photobiol. 2015; 92(1): 102-110. DOI: 10.1111/php.12548
Souri MK & Hatamian M. Amino chelates in plant nutrition: a review. J. Plant Nutr. 2019; 42(1): 67-78. DOI: 10.1080/01904167.2018.1549671.
Rahbarian R, Khavari-nejad R, Ganjeali A, Bagheri AR & Najafi F. Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer Arietinum L.) genotypes. Acta Biologica Cracoviensia-Series Botanica. 2011; 53(1): 47-56. DOI: 10.2478/v10 182-011-0007-2
Souri MK & Yaghoubi Sooraki F. Benefits of organic fertilizers spray on growth quality of chili pepper seedlings under cool temperature. J. Plant Nutr. 2019; 42(6): 650-656. DOI: 10.1080/019 04167.2019.1568461.
Downie A, Myazaki S, Bohnert H. John P, Coleman J, Parry M & Haslam R. Expression profiling of the response of Arabidopsis thaliana to methanol stimulation. Phytochem. 2004; 65(16): 2305-2316. DOI: 10.1016/j.phytoche m.2004.07.006
Guo P, Baum S, Grando S, Ceccarelli G, Bai R, Li M, Von Korff RK, Varshney A & Valkoun J. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J. Exp. Bot. 2009; 60(12): 3531-3544. DOI: 10. 1093/jxb/erp194.
Sikder S, Foulkes J, West H, De J Silva, Gaju O, Greenl A & Howell P. Evaluation of photosynthetic potential of wheat genotypes under drought condition. Photosynthetica. 2015; 53(1): 47-54. DOI: 10.1007/s11099-015-0082-9
Bhardway R & Singhal G. Effect of water stress on photochemical activity of chloroplasts during greening etiolated barley seedlings. Plant Cell Physiol. 1981; 22(2): 155-162. DOI: 10.1093/ oxfordjournals.pcp.a076152
Behra RK, Mishra PC & Choudhury NK. High irradiance and water stress induce alterations in pigment composition and chloroplast activities of primary wheat leaves. J. Plant Physiol. 2002; 159(9): 967-973. DOI: doi.org/10.1078/0176-1617-00823
Xia J, Li Y & Zou D. Effect of salinity stress on PSII in Ulva lactuca as probed by chlorophyll flouresence measurements. Aquat. Bot. 2004; 80(2): 129-137.
DOI: 10.1016/j.aquab ot.2004.07.006
Lu CM & Vonshak A. Effect of salinity stress on photosystem II function in cyanobacterial spirulina platensis cells. Physiol. Plant. 2002; 114(3): 405-413.
DOI: 10.1034/j.1399-3054.2002.1140 310.x
Bissati KE, Delphin E, Murata N, Etienne AL & Kirilovsky D. Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803: involvement of two different mechanisms. Biochemicaet Biophysica Acta. 2000; 1457(3): 229-242.
DOI: 10.1016/S0005-2728(00) 00104-3
Kruk J, Czytko HH, Oettmeier W & Trebest A. Tocopherol as singlet oxygen scavenger in photosystem II. J. Plant Physiol. 2005; 162(7): 749-757.
DOI: 10.1016/j.jplph.2005.04.020
Yordanov I, Velikova V & Tsonev T. Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol. 2000; 38(1): 171-186.
Mehata P, Jajoo A, Mathur S & Bharti S. Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol. Biochem. 2010; 48(1): 16-20. DOI: 10.1016/j. plaphy.2009.10.006
Bertamini M, Muthuchelian K & Nedunchezhian N. Iron deficiency induced changes on the donor site of PS II in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. Plant Sci. 2002; 162(4): 599-605. DOI: 10.1016/S0168-9452(01) 00604-5
Donnini S, Castagna A, Guidi L, Zocchi G & Ranieri A. Leaf responses to reduced iron availability in two tomato genotypes: T3238FER (iron-efficient) and T3238fer (iron-inefficient). J. Plant Nutr. 2003; 26(10): 2137-2148. DOI: 10.1081/pln-120024270
Bienfait HF & Van der Mark F. Phytoferritin and its role in iron metabolism. In: Robb DA, Pierpoint WS. eds. Metals and Micronutrients. Uptake and Utilization by Plants. London: Academic Press, 1983: 111-123.
Doncheva S, Poschenrieder C, Stoyanova Z, Georgieva K, Velichkova M & Barceló J. Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environ. Exp. Bot. 2009; 65(1): 189-197.
DOI: 10.1016/j.envexpbot.2008.11.006
Marschner H. Mineral Nutrition of High Plant. 3th ed. Academic press, 2012.
Fageria NK. The use of Nutrients in Crop Plants. CRC Press, Boca Raton, Florida. 2009: 30. DOI: 10.1093/aob/mcp227
Li Q, Chen LS, Jiang HX, Tang N, Yang LT, Lin ZH & Yang GH. Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/ oxygenize, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grand is seedlings. BMC. Plant Biol. 2010; 10(1): 1-16.
DOI: 10.1186/1471-2229-10-42
Nickelsen J & Rengstl B. Photosystem II assembly: From cyanobacteria to plants. Annu. Rev. Plant Physiol. 2013; 64(1): 609-35. DOI: 10.1146/annurev-arplant-050312-120124
Izaguirre-Mayoral ML & Sinclair TR. Variation in Manganese and Iron Accumulation among Soybean Genotypes Growing on Hydroponic Solutions of Differing Manganese and Nitrate Concentrations. J. Plant Nutr. 2005; 28(3): 521-535.
DOI: 10.1081/pln-200049204
DeRosa MC, Monreal C & Schnitzer MR. Walsh and Y. Sultan. Nanotechnology in fertilizers. Nat. Nanotechnol. 2010; 5(2): 91. DOI: 10.1038/nnano.2010.2
Subramanian KS & Manikandan A. Thirunavukkarasu M, Rahale CS. Nano-fertilizers for balanced crop nutrition. Nano.Food Agric. 2015; 3(1): 69-80.
DOI: 10.1007/978-3-319-14024-7-3
Liu R & Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015; 514(1): 131-139.
DOI: 10.1016/j.scit oten v.2015.01.104
Chahal AS, Madgulkar AR, Kshirsagar SJ, Bhalekar MR, Dikpati A & Gawli P. Amorphous nanoparticles for solubility enhancement. J. Adv. Pharm. Sci. 2012; 2(1): 167-178.
Erdal I, Kepenek K & Kizilgos I. Effect of foliar iron applications at different growth stages on iron and some nutrient concentrations in strawberry cultivars. Turk. J. Agric. 2004; 28(1): 421-427.
Movahhedy-Dehnavy M, Modarres-Sanavy SAM & Mokhtassi-Bidgoli A. Foliar application of zinc and manganese improves seed yield and quality of safflower (Carthamus tinctorius L.) grown under water deficit stress. Ind. Crops Prod. 2009; 30(1): 82-92. DOI: 10.1016/j.indcrop. 2009.02.004
Bennett MJ, Rhetoric E, Hicks DR, Naeve SL & Bennett NB. The Minnesota soybean field book. St Paul. MN: University of Minnesota Extension Service.2014:79.
Fouilleux G. Increase of Bradyrhizobium japonicum numbers in soils and enhanced nodulation of soybean (Glycine max (L.) merr.) using granular inoculants amended with nutrients. FEMS Microbiol Ecol. 1996; 20(3): 173-183.
DOI: 10.1016/0168-6496(96)00028-1
Kacar B. Plant nutrition application guide, Ankara Univ. Agricultural. Fac. Pub: 900, Application Guides: 214. Ankara, Turkey, 1984:47-79.
Wijewardana C, Reddy KR & Bellaloui N. Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chem. 2018; 278(1): 92-100. DOI: 10.1016/j.food chem. 2018.11.035
Ravi S, Channal HT, Hebsur NS, Patil BN & Dharmatti PR. Effect of sulphur, zinc and iron nutrition on growth, yield, nutrient uptake and quality of safflower (Carthamus tinctorius L.). Karnataka J. Agric. Sci. 2008; 21(3): 382-385.
Rose LA, Feltion WL & Banks LW. Responses of four soybean variations to foliar zinc fertilizer. Aust. J. Exp. Agric. 2002; 21: 236-240.
Khan HR, McDonald GK & Rengel Z. Zn fertilization improves water use efficiency, grain yield and seed Zn content in chickpea. Plant Soil. 2003; 249(2): 389-400.
DOI: 10.1023/a:1022808323744
Ghasemian V, Ghalavand A, Soroosh Zadeh A & Pirzad A. The effect of iron, zinc and manganese on quality and quantity of soybean seed. J. Phytol. 2010; 2(11): 73-9.
Chibba IM, Nayyar VK & Kanwar JS. Influence of mode and source of applied iron on fenugreek (Trigonella corniculata L.) in a typic ustochrept in Punjub, India. Int. J. Agric. Biol. 2007; 9(2): 254-256.
Yousefi M & Zandi P. Effects of foliar application of zinc and manganese on yield of pumpkin (Cucurbita pepo L.) under two irrigation patterns. Journal of Polish Agricultural Universities. 2012; 15(4): 1505-1513.
Taiz L & Zeiger E. The Benjamin Cumming Publishing Company. Plant Physiol. 2001; 91(6): 379. DOI: 10.1093/aob/mcg079
Zhao GQ, Ma BL & Ren CZ. Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. Crop Sci. 2007; 47(1): 123-131.
DOI: 10.21 35/cropsci2006.06. 0371
Anjum F, Yaseen M, Rasool E, Wahid A & Anjum S. Water stress in barley (Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents. Pak. J. Agric. Sci. 2003; 40(2): 41-49.
Kafi M, Borzooei A, Salehi M, Kamandi A & Maassoumi A. Nabati. Plant environmental stress physiology. Mashhad University Jihad Press, 2009: 502. [In Persian]
Ahmadpour R, Hosseinzadeh SR, Armand N & Chashiani S. Evaluation of growth features, photosynthetic pigments and antioxidant enzymes activity of lentils cultivars in response to water stress. Nova Biologica Reperta. 2017; 4(3): 226-235. [In Persian]
Pagter M, Bragato C & Brix H. Tolerance and physiological responses of Phragmites australis to water deficit. Aquat. Bot. 2005; 81(4): 285-299.
DOI: 10.1016/j.aquabot.2005.01.002
Marschner H. Mineral nutrition of higher plants. Second edition, Academic Press Inc London. Ann. Bot. 1995; 78(4): 527-528. DOI: 10.1006/anbo.1996.0155
Souri MK & Bakhtiarizade M. Biostimulation effects of rosemary essential oil on growth and nutrient uptake of tomato seedlings. Scientia Horticulture. 2019; 243: 472-476.
DOI: 10.1016/j.scienta.2018. 08.056.
Vaghar MS, Sayfzadeh S, Zakerin HR, Kobraee S & Valadabadi SA. Foliar application of iron, zinc, and manganese nano-chelates improves physiological indicators and soybean yield under water deficit stress. J. Plant Nutr. 2020; 43(18): 2740-2756.
DOI: 10.1080/01904167.2020. 1793180
Babaeian M, Tavassoli A, Ghanbari A, Esmaeilian Y & Fahimifard M. Effects of foliar micronutrient application on osmotic adjustments, grain yield and yield components in sunflower (Alster cultivar) under water stress at three stages. Afr. J. Agric. Res. 2011; 6(5): 1204-1208. DOI: 10.5897/AJAR10. 928
Karim MR, Zhang YQ, Zhao RR, Chen XP, Zhang FS & Zou CQ. Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J. Plant Nutr. Soil Sci. 2012; 175(1): 142-151. DOI: 10.1002/jpln.201
Jiang W, Struik PC, Van Keulen H, Zhao M, Jin LN & Stomph TJ. Does increased zinc uptake enhance grain zinc mass concentration in rice?. Ann. Appl. Biol. 2008; 153(1): 135-147. DOI: 10.1111/j.1744-7348.2008.00 243.x
Ghasemi-Fasaei R & Ronaghi A. AInteraction of iron with copper, zinc, and manganese in wheat as affected by iron and manganese in a calcareous soil. J. Plant Nutr. 2008; 31(5): 839-848. DOI: 10.1080/01904160802 043148
Rengel Z & Romheld V. Differential tolerance to Fe and Zn definition in wheat germplasm. Euphytica. 2012; 113(3): 219-225. DOI: 10.1023/a:1003965007305
Kochian LV. Mechanisms of micronutrient uptake and translocation in plants. In: Micronutrients in Agriculture. JJ. Mortvedt, Cox FR & Shuman LM. Welch RM. Soil Sci. Soc. Am. Madison. 1991; 229-296. DOI: 10.2136/sssabookser4.2ed.c8
Maralian H. Effect of foliar application of Zn and Fe on wheat yield and quality. Afr. J. Biotechnol. 2009; 8(24): 6795-6798. DOI: 10.4314/ajb.v8i24.68671
Pahlavan-Rad MR & Pessarakli M. Response of wheat plants to zinc, iron, and manganese applications and uptake and concentration of zinc, iron, and manganese in Wheat grains. Commun. Soil Sci. Plant Anal. 2009; 40(1): 1322-1332.
DOI: 10.1080/00103620 902761262
_||_Assefa Y, Bajjalieh N, Archontoulis S, Casteel S, Davidson D, Kovács P & Ciampitti IA. Spatial Characterization of Soybean Yield and Quality (Amino Acids, Oil, and Protein) for United States, Sci. Rep. 2018; 8(2): 1-11. DOI: 10.1038/s41598-018-32895-0
Armand N, Amiri H & Ismaili A. Interaction of methanol spray and water deficit stress on photosynthesis and biochemical characteristics of Phaseolus vulgaris L. cv. Sadry. Photochem. Photobiol. 2015; 92(1): 102-110. DOI: 10.1111/php.12548
Souri MK & Hatamian M. Amino chelates in plant nutrition: a review. J. Plant Nutr. 2019; 42(1): 67-78. DOI: 10.1080/01904167.2018.1549671.
Rahbarian R, Khavari-nejad R, Ganjeali A, Bagheri AR & Najafi F. Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer Arietinum L.) genotypes. Acta Biologica Cracoviensia-Series Botanica. 2011; 53(1): 47-56. DOI: 10.2478/v10 182-011-0007-2
Souri MK & Yaghoubi Sooraki F. Benefits of organic fertilizers spray on growth quality of chili pepper seedlings under cool temperature. J. Plant Nutr. 2019; 42(6): 650-656. DOI: 10.1080/019 04167.2019.1568461.
Downie A, Myazaki S, Bohnert H. John P, Coleman J, Parry M & Haslam R. Expression profiling of the response of Arabidopsis thaliana to methanol stimulation. Phytochem. 2004; 65(16): 2305-2316. DOI: 10.1016/j.phytoche m.2004.07.006
Guo P, Baum S, Grando S, Ceccarelli G, Bai R, Li M, Von Korff RK, Varshney A & Valkoun J. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J. Exp. Bot. 2009; 60(12): 3531-3544. DOI: 10. 1093/jxb/erp194.
Sikder S, Foulkes J, West H, De J Silva, Gaju O, Greenl A & Howell P. Evaluation of photosynthetic potential of wheat genotypes under drought condition. Photosynthetica. 2015; 53(1): 47-54. DOI: 10.1007/s11099-015-0082-9
Bhardway R & Singhal G. Effect of water stress on photochemical activity of chloroplasts during greening etiolated barley seedlings. Plant Cell Physiol. 1981; 22(2): 155-162. DOI: 10.1093/ oxfordjournals.pcp.a076152
Behra RK, Mishra PC & Choudhury NK. High irradiance and water stress induce alterations in pigment composition and chloroplast activities of primary wheat leaves. J. Plant Physiol. 2002; 159(9): 967-973. DOI: doi.org/10.1078/0176-1617-00823
Xia J, Li Y & Zou D. Effect of salinity stress on PSII in Ulva lactuca as probed by chlorophyll flouresence measurements. Aquat. Bot. 2004; 80(2): 129-137.
DOI: 10.1016/j.aquab ot.2004.07.006
Lu CM & Vonshak A. Effect of salinity stress on photosystem II function in cyanobacterial spirulina platensis cells. Physiol. Plant. 2002; 114(3): 405-413.
DOI: 10.1034/j.1399-3054.2002.1140 310.x
Bissati KE, Delphin E, Murata N, Etienne AL & Kirilovsky D. Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803: involvement of two different mechanisms. Biochemicaet Biophysica Acta. 2000; 1457(3): 229-242.
DOI: 10.1016/S0005-2728(00) 00104-3
Kruk J, Czytko HH, Oettmeier W & Trebest A. Tocopherol as singlet oxygen scavenger in photosystem II. J. Plant Physiol. 2005; 162(7): 749-757.
DOI: 10.1016/j.jplph.2005.04.020
Yordanov I, Velikova V & Tsonev T. Plant responses to drought and stress tolerance. Bulg. J. Plant Physiol. 2000; 38(1): 171-186.
Mehata P, Jajoo A, Mathur S & Bharti S. Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. Plant Physiol. Biochem. 2010; 48(1): 16-20. DOI: 10.1016/j. plaphy.2009.10.006
Bertamini M, Muthuchelian K & Nedunchezhian N. Iron deficiency induced changes on the donor site of PS II in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. Plant Sci. 2002; 162(4): 599-605. DOI: 10.1016/S0168-9452(01) 00604-5
Donnini S, Castagna A, Guidi L, Zocchi G & Ranieri A. Leaf responses to reduced iron availability in two tomato genotypes: T3238FER (iron-efficient) and T3238fer (iron-inefficient). J. Plant Nutr. 2003; 26(10): 2137-2148. DOI: 10.1081/pln-120024270
Bienfait HF & Van der Mark F. Phytoferritin and its role in iron metabolism. In: Robb DA, Pierpoint WS. eds. Metals and Micronutrients. Uptake and Utilization by Plants. London: Academic Press, 1983: 111-123.
Doncheva S, Poschenrieder C, Stoyanova Z, Georgieva K, Velichkova M & Barceló J. Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environ. Exp. Bot. 2009; 65(1): 189-197.
DOI: 10.1016/j.envexpbot.2008.11.006
Marschner H. Mineral Nutrition of High Plant. 3th ed. Academic press, 2012.
Fageria NK. The use of Nutrients in Crop Plants. CRC Press, Boca Raton, Florida. 2009: 30. DOI: 10.1093/aob/mcp227
Li Q, Chen LS, Jiang HX, Tang N, Yang LT, Lin ZH & Yang GH. Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/ oxygenize, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grand is seedlings. BMC. Plant Biol. 2010; 10(1): 1-16.
DOI: 10.1186/1471-2229-10-42
Nickelsen J & Rengstl B. Photosystem II assembly: From cyanobacteria to plants. Annu. Rev. Plant Physiol. 2013; 64(1): 609-35. DOI: 10.1146/annurev-arplant-050312-120124
Izaguirre-Mayoral ML & Sinclair TR. Variation in Manganese and Iron Accumulation among Soybean Genotypes Growing on Hydroponic Solutions of Differing Manganese and Nitrate Concentrations. J. Plant Nutr. 2005; 28(3): 521-535.
DOI: 10.1081/pln-200049204
DeRosa MC, Monreal C & Schnitzer MR. Walsh and Y. Sultan. Nanotechnology in fertilizers. Nat. Nanotechnol. 2010; 5(2): 91. DOI: 10.1038/nnano.2010.2
Subramanian KS & Manikandan A. Thirunavukkarasu M, Rahale CS. Nano-fertilizers for balanced crop nutrition. Nano.Food Agric. 2015; 3(1): 69-80.
DOI: 10.1007/978-3-319-14024-7-3
Liu R & Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015; 514(1): 131-139.
DOI: 10.1016/j.scit oten v.2015.01.104
Chahal AS, Madgulkar AR, Kshirsagar SJ, Bhalekar MR, Dikpati A & Gawli P. Amorphous nanoparticles for solubility enhancement. J. Adv. Pharm. Sci. 2012; 2(1): 167-178.
Erdal I, Kepenek K & Kizilgos I. Effect of foliar iron applications at different growth stages on iron and some nutrient concentrations in strawberry cultivars. Turk. J. Agric. 2004; 28(1): 421-427.
Movahhedy-Dehnavy M, Modarres-Sanavy SAM & Mokhtassi-Bidgoli A. Foliar application of zinc and manganese improves seed yield and quality of safflower (Carthamus tinctorius L.) grown under water deficit stress. Ind. Crops Prod. 2009; 30(1): 82-92. DOI: 10.1016/j.indcrop. 2009.02.004
Bennett MJ, Rhetoric E, Hicks DR, Naeve SL & Bennett NB. The Minnesota soybean field book. St Paul. MN: University of Minnesota Extension Service.2014:79.
Fouilleux G. Increase of Bradyrhizobium japonicum numbers in soils and enhanced nodulation of soybean (Glycine max (L.) merr.) using granular inoculants amended with nutrients. FEMS Microbiol Ecol. 1996; 20(3): 173-183.
DOI: 10.1016/0168-6496(96)00028-1
Kacar B. Plant nutrition application guide, Ankara Univ. Agricultural. Fac. Pub: 900, Application Guides: 214. Ankara, Turkey, 1984:47-79.
Wijewardana C, Reddy KR & Bellaloui N. Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chem. 2018; 278(1): 92-100. DOI: 10.1016/j.food chem. 2018.11.035
Ravi S, Channal HT, Hebsur NS, Patil BN & Dharmatti PR. Effect of sulphur, zinc and iron nutrition on growth, yield, nutrient uptake and quality of safflower (Carthamus tinctorius L.). Karnataka J. Agric. Sci. 2008; 21(3): 382-385.
Rose LA, Feltion WL & Banks LW. Responses of four soybean variations to foliar zinc fertilizer. Aust. J. Exp. Agric. 2002; 21: 236-240.
Khan HR, McDonald GK & Rengel Z. Zn fertilization improves water use efficiency, grain yield and seed Zn content in chickpea. Plant Soil. 2003; 249(2): 389-400.
DOI: 10.1023/a:1022808323744
Ghasemian V, Ghalavand A, Soroosh Zadeh A & Pirzad A. The effect of iron, zinc and manganese on quality and quantity of soybean seed. J. Phytol. 2010; 2(11): 73-9.
Chibba IM, Nayyar VK & Kanwar JS. Influence of mode and source of applied iron on fenugreek (Trigonella corniculata L.) in a typic ustochrept in Punjub, India. Int. J. Agric. Biol. 2007; 9(2): 254-256.
Yousefi M & Zandi P. Effects of foliar application of zinc and manganese on yield of pumpkin (Cucurbita pepo L.) under two irrigation patterns. Journal of Polish Agricultural Universities. 2012; 15(4): 1505-1513.
Taiz L & Zeiger E. The Benjamin Cumming Publishing Company. Plant Physiol. 2001; 91(6): 379. DOI: 10.1093/aob/mcg079
Zhao GQ, Ma BL & Ren CZ. Growth, gas exchange, chlorophyll fluorescence and ion content of naked oat in response to salinity. Crop Sci. 2007; 47(1): 123-131.
DOI: 10.21 35/cropsci2006.06. 0371
Anjum F, Yaseen M, Rasool E, Wahid A & Anjum S. Water stress in barley (Hordeum vulgare L.). II. Effect on chemical composition and chlorophyll contents. Pak. J. Agric. Sci. 2003; 40(2): 41-49.
Kafi M, Borzooei A, Salehi M, Kamandi A & Maassoumi A. Nabati. Plant environmental stress physiology. Mashhad University Jihad Press, 2009: 502. [In Persian]
Ahmadpour R, Hosseinzadeh SR, Armand N & Chashiani S. Evaluation of growth features, photosynthetic pigments and antioxidant enzymes activity of lentils cultivars in response to water stress. Nova Biologica Reperta. 2017; 4(3): 226-235. [In Persian]
Pagter M, Bragato C & Brix H. Tolerance and physiological responses of Phragmites australis to water deficit. Aquat. Bot. 2005; 81(4): 285-299.
DOI: 10.1016/j.aquabot.2005.01.002
Marschner H. Mineral nutrition of higher plants. Second edition, Academic Press Inc London. Ann. Bot. 1995; 78(4): 527-528. DOI: 10.1006/anbo.1996.0155
Souri MK & Bakhtiarizade M. Biostimulation effects of rosemary essential oil on growth and nutrient uptake of tomato seedlings. Scientia Horticulture. 2019; 243: 472-476.
DOI: 10.1016/j.scienta.2018. 08.056.
Vaghar MS, Sayfzadeh S, Zakerin HR, Kobraee S & Valadabadi SA. Foliar application of iron, zinc, and manganese nano-chelates improves physiological indicators and soybean yield under water deficit stress. J. Plant Nutr. 2020; 43(18): 2740-2756.
DOI: 10.1080/01904167.2020. 1793180
Babaeian M, Tavassoli A, Ghanbari A, Esmaeilian Y & Fahimifard M. Effects of foliar micronutrient application on osmotic adjustments, grain yield and yield components in sunflower (Alster cultivar) under water stress at three stages. Afr. J. Agric. Res. 2011; 6(5): 1204-1208. DOI: 10.5897/AJAR10. 928
Karim MR, Zhang YQ, Zhao RR, Chen XP, Zhang FS & Zou CQ. Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J. Plant Nutr. Soil Sci. 2012; 175(1): 142-151. DOI: 10.1002/jpln.201
Jiang W, Struik PC, Van Keulen H, Zhao M, Jin LN & Stomph TJ. Does increased zinc uptake enhance grain zinc mass concentration in rice?. Ann. Appl. Biol. 2008; 153(1): 135-147. DOI: 10.1111/j.1744-7348.2008.00 243.x
Ghasemi-Fasaei R & Ronaghi A. AInteraction of iron with copper, zinc, and manganese in wheat as affected by iron and manganese in a calcareous soil. J. Plant Nutr. 2008; 31(5): 839-848. DOI: 10.1080/01904160802 043148
Rengel Z & Romheld V. Differential tolerance to Fe and Zn definition in wheat germplasm. Euphytica. 2012; 113(3): 219-225. DOI: 10.1023/a:1003965007305
Kochian LV. Mechanisms of micronutrient uptake and translocation in plants. In: Micronutrients in Agriculture. JJ. Mortvedt, Cox FR & Shuman LM. Welch RM. Soil Sci. Soc. Am. Madison. 1991; 229-296. DOI: 10.2136/sssabookser4.2ed.c8
Maralian H. Effect of foliar application of Zn and Fe on wheat yield and quality. Afr. J. Biotechnol. 2009; 8(24): 6795-6798. DOI: 10.4314/ajb.v8i24.68671
Pahlavan-Rad MR & Pessarakli M. Response of wheat plants to zinc, iron, and manganese applications and uptake and concentration of zinc, iron, and manganese in Wheat grains. Commun. Soil Sci. Plant Anal. 2009; 40(1): 1322-1332.
DOI: 10.1080/00103620 902761262