Investigation of the Emergence of Multi-Drug Resistance (MDR) Mediated by blaDHA β-lactamase in Pseudomonas aeruginosa Isolated from Patients
Subject Areas : microbiologyAzher Talib Alvan 1 , Bita Behboodian 2 * , Samaneh Dolat Abadi 3 , Matin Setayesh 4
1 - Department of Biology, Faculty of Convergent Sciences and Technologies, SR.C., Islamic Azad University, Tehran, Iran.
2 - Department of Biology, Faculty of Basic Sciences, Ma.C., Islamic Azad University of Mashhad, Iran
3 - Department of Biology, Ne.C., Islamic Azad University, Neyshabur, Iran
4 - Biotechnology Research Center, Malek Ashtar University of Technology, Tehran, Iran
Keywords: Pseudomonas aeruginosa, Beta-Lactamases, blaDHA, Multi Drug Resistance, Biofilm ,
Abstract :
Pseudomonas aeruginosa is an opportunistic pathogen that causes chronic lung infections in cystic fibrosis patients. In addition, P. aeruginosa is one of the pathogens responsible for hospital infections. P. aeruginosa is highly resistant to antibiotics and has been placed in the "critical" group of pathogens by the WHO, in urgent need of new antibiotics. BlaDHA beta-lactamase is one of the members of Ambler's class C that was investigated in this study. In this research, clinical samples of blood, urine, wound and trachea from hospital infections from one of the selected hospitals in Razavi Khorasan were examined. P. aeruginosa samples were identified by biochemical tests. Their antibiotic sensitivity was evaluated by disk diffusion method. After primer design and bacterial DNA extraction, the frequency of blaDHA gene presence in isolates was evaluated by PCR technique. The rate of isolation of P. aeruginosa was 5.8% of all hospital infections, which is more from ICU (4%) and tracheal samples (4.5%). Antibiogram test results showed 100% resistance to Cefazolin and Ampicillin. After that, the highest level of resistance to the antibiotics Cefitizoxim (87.5%), Ceftriaxone (62.8%), Meropenem (52.6%), Cefepime (48.6%) and Levofloxacin (45.6%) was seen. In this study, the lowest level of resistance to Imipenem was observed (0.7%) and all isolates were reported to be sensitive to Doxycycline. After checking the PCR results, 2.3% of the isolates carried the blaDHA gene. The findings showed that the distribution of blaDHA gene in Iranian P. aeruginosa isolates is limited, although this issue needs more studies.
Serra-Burriel M, Keys M, Campillo-Artero C, Agodi A, Barchitta M, Gikas A, et al. Impact of multi-drug resistant bacteria on economic and clinical outcomes of healthcare-associated infections in adults: Systematic review and meta-analysis. PLoS One [Internet]. 2020;15(1):1–14. Available from: https://doi.org/10.1371/journal.pone.0227139
2. Singh V, Chibale K. Strategies to Combat Multi-Drug Resistance in Tuberculosis. Acc Chem Res [Internet]. 2021 May 18;54(10):2361–76. Available from: https://doi.org/10.1021/acs.accounts.0c00878
3. Fernández J, Bert F, Nicolas-Chanoine MH. The challenges of multi-drug-resistance in hepatology. J Hepatol [Internet]. 2016;65(5):1043–54. Available from: https://www.sciencedirect.com/science/article/pii/S0168827816304317
4. Morris S, Cerceo E. Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting. Vol. 9, Antibiotics. 2020.
5. Wu W, Jin Y, Bai F, Jin S. Chapter 41 - Pseudomonas aeruginosa. In: Tang YW, Sussman M, Liu D, Poxton I, Schwartzman JBTMMM (Second E, editors. Boston: Academic Press; 2015. p. 753–67. Available from: https://www.sciencedirect.com/science/article/pii/B978012397169200041X
6. Strateva T, Yordanov D. Pseudomonas aeruginosa - a phenomenon of bacterial resistance. J Med Microbiol. 2009 Sep;58(Pt 9):1133–48.
7. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, et al. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol [Internet]. 2003;48(6):1511–24. Available from: https://doi.org/10.1046/j.1365-2958.2003.03525.x
8. Vetrivel A, Ramasamy M, Vetrivel P, Natchimuthu S, Arunachalam S, Kim GS, et al. Pseudomonas aeruginosa Biofilm Formation and Its Control. Biologics [Internet]. 2021;1(3):312–36. Available from: https://www.mdpi.com/2673-8449/1/3/19
9. Dehkordi SMH, Anvar SA, Rahimi E, Ahari H, Ataee M. Molecular investigation of prevalence, phenotypic and genotypic diversity, antibiotic resistance, frequency of virulence genes and genome sequencing in Pseudomonas aeruginosa strains isolated from lobster. Int J Food Microbiol [Internet]. 2022;382:109901. Available from: https://www.sciencedirect.com/science/article/pii/S0168160522003737
10. Abdelrahman DN, Taha AA, Dafaallah MM, Mohammed AA, El Hussein ARM, Hashim AI, et al. β-lactamases (bla (TEM), bla (SHV), bla (CTXM-1), bla (VEB), bla (OXA-1) ) and class C β-lactamases gene frequency in Pseudomonas aeruginosa isolated from various clinical specimens in Khartoum State, Sudan: a cross sectional study. F1000Research. 2020;9:774.
11. kani MM, Alabdali YAJ. Mobile genetic elements profiling, gene flow, and antimicrobial susceptibility profiles, among Pseudomonas aeruginosa isolates, isolated from Al Muthanna hospitals’ wound and burn units in Iraq. Gene [Internet]. 2023;884:147696. Available from: https://www.sciencedirect.com/science/article/pii/S0378111923005371
12. Parsek MR, Tolker-Nielsen T. Pattern formation in Pseudomonas aeruginosa biofilms. Curr Opin Microbiol [Internet]. 2008;11(6):560–6. Available from: https://www.sciencedirect.com/science/article/pii/S1369527408001331
13. CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests. CLSI standard M02. Wayne, PA Clin Lab Stand Institutey. 2024;96.
14. Mata C, Miró E, Toleman M, Rivera MA, Walsh TR, Navarro F. Association of blaDHA-1 and qnrB genes carried by broad-host-range plasmids among isolates of Enterobacteriaceae at a Spanish hospital. Clin Microbiol Infect [Internet]. 2011;17(10):1514–7. Available from: https://www.sciencedirect.com/science/article/pii/S1198743X14618681
15. Hamid SF, Taha AB, Abdulwahid MJ. Distribution of blaTEM, blaSHV, blaCTX-M, blaOXA, and blaDHA in Proteus mirabilis Isolated from Diabetic Foot Infections in Erbil, Iraq. Cell Mol Biol. 2020;66(1):88–94.
16. Mahrouki S, Bourouis A, Chihi H, Ouertani R, Ferjani M, Moussa MB, et al. First characterisation of plasmid-mediated quinolone resistance-qnrS1 co-expressed blaCTX-M-15 and blaDHA-1 genes in clinical strain of Morganella morganii recovered from a Tunisian Intensive Care Unit. Indian J Med Microbiol [Internet]. 2012;30(4):437–41. Available from: https://www.sciencedirect.com/science/article/pii/S0255085721008537
17. Li L, Olsen RH, Wang C, Song A, Xiao J, Meng H, et al. First report of two foodborne Salmonella enterica subsp. enterica serovar Bovismorbificans isolates carrying a novel mega-plasmid harboring blaDHA-1 and qnrB4 genes. Int J Food Microbiol [Internet]. 2021;360:109439. Available from: https://www.sciencedirect.com/science/article/pii/S0168160521003986
18. Al Sium SM, Goswami B, Chowdhury SF, Naser SR, Sarkar MK, Faruq MJ, et al. An insight into the genome-wide analysis of bacterial defense mechanisms in a uropathogenic Morganella morganii isolate from Bangladesh. PLoS One [Internet]. 2025 Jan 23;20(1):e0313141. Available from: https://doi.org/10.1371/journal.pone.0313141
19. Yamochi T, Yoshida K, Ohira Y, Ota H, Yamochi T, Takimoto M, et al. Genotypic characterization Escherichia coli strains from Japan producing AmpC beta-lactamase. Showa Univ J Med Sci. 2022;34(4):183–90.
20. Debergh H, Maex M, Garcia-Graells C, Boland C, Saulmont M, Van Hoorde K, et al. First Belgian Report of Ertapenem Resistance in an ST11 Klebsiella Pneumoniae Strain Isolated from a Dog Carrying blaSCO-1 and blaDHA-1 Combined with Permeability Defects. Antibiotics [Internet]. 2022;11(9). Available from: https://www.mdpi.com/2079-6382/11/9/1253
21. Jin Y, Shao C, Li J, Fan H, Bai Y, Wang Y. Outbreak of Multidrug Resistant NDM-1-Producing Klebsiella pneumoniae from a Neonatal Unit in Shandong Province, China. PLoS One [Internet]. 2015 Mar 23;10(3):e0119571. Available from: https://doi.org/10.1371/journal.pone.0119571
22. Schwartz B, Klamer K, Zimmerman J, Kale-Pradhan PB, Bhargava A. Multidrug Resistant Pseudomonas aeruginosa in Clinical Settings: A Review of Resistance Mechanisms and Treatment Strategies. Pathog (Basel, Switzerland). 2024 Nov;13(11).
23. Gill JS, Arora S, Khanna SP, Kumar KVSH. Prevalence of Multidrug-resistant, Extensively Drug-resistant, and Pandrug-resistant Pseudomonas aeruginosa from a Tertiary Level Intensive Care Unit. J Glob Infect Dis [Internet]. 2016;8(4). Available from: https://journals.lww.com/jgid/fulltext/2016/08040/prevalence_of_multidrug_resistant,_extensively.5.aspx
24. Kunz Coyne AJ, El Ghali A, Holger D, Rebold N, Rybak MJ. Therapeutic Strategies for Emerging Multidrug-Resistant Pseudomonas aeruginosa. Infect Dis Ther [Internet]. 2022;11(2):661–82. Available from: https://doi.org/10.1007/s40121-022-00591-2
25. Sindeldecker D, Stoodley P. The many antibiotic resistance and tolerance strategies of Pseudomonas aeruginosa. Biofilm [Internet]. 2021;3:100056. Available from: https://www.sciencedirect.com/science/article/pii/S2590207521000149
26. Gasink LB, Fishman NO, Weiner MG, Nachamkin I, Bilker WB, Lautenbach E. Fluoroquinolone-Resistant Pseudomonas aeruginosa: Assessment of Risk Factors and Clinical Impact. Am J Med [Internet]. 2006;119(6):526.e19-526.e25. Available from: https://www.sciencedirect.com/science/article/pii/S0002934305011502
27. Shabrina LS, Ahmad A, Fadrian F. Bioscientia Medicina : Journal of Biomedicine & Translational Research Diagnosis and Management of Paraquat Intoxication. 1962;3478–99.
28. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005 Oct;18(4):657–86.
29. Chia JH, Su LH, Lee MH, Kuo AJ, Shih NY, Siu LK, et al. Development of high-level carbapenem resistance in Klebsiella pneumoniae among patients with prolonged hospitalization and carbapenem exposure. Microb Drug Resist. 2010 Dec;16(4):317–25.