Deep Learning Algorithms and Audit Risk Analysis: A Novel Approach to Supporting Auditors’ Professional Judgment
Subject Areas : Behavioral reactions in the capital market
Rasha Mhmood Ali
1
,
Hamidreza Azizi
2
*
,
Siraj Razooqi Abbas
3
,
rahman saedi
4
1 - PhD. student, Department of Accounting, Faculty of International Studies, Isfahan(Khorasgan) Branch , Islamic Azad University, Isfahan, Iran.
2 - Department of Accounting, Ard.C., Islamic Azad University, Ardebil, Iran
3 - Department of Accounting, Faculty of Finance and Accounting, Wasit Provincial University, Iraq
4 - Department of Accounting, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
Keywords: Audit Risk Prediction, Deep Learning, Perfesional Behaviore, Support Vector Machine, Convolutional Neural Network, Recurrent Neural Network,
Abstract :
This study aims to develop an effective model for predicting audit risk using deep learning algorithms and to examine its implications for enhancing auditors’ professional judgment. To achieve this, three advanced algorithms—Support Vector Machine (SVM), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN)—were applied to financial and non-financial data from 150 firms listed on the Tehran Stock Exchange over the period 2013–2023. Audit risk was operationalized as a binary variable, reflecting the occurrence of Type I and Type II audit errors. Significant predictors of audit risk were selected using a two-sample mean comparison test. The predictive performance of the deep learning models was then evaluated and compared. The results indicate that the RNN model achieved the highest accuracy (96.4%), followed by SVM (89.6%) and CNN (85.8%). These findings suggest that deep learning algorithms—particularly RNNs—can effectively detect complex patterns and temporal dependencies in financial data, thereby serving as powerful tools to support auditors in making informed and ethical judgments. This study contributes to the integration of artificial intelligence into the audit domain and offers practical insights for improving audit risk assessment, reducing judgmental errors, and strengthening stakeholder trust in financial reporting
الف- منابع فارسی:
حیدی نژاد، قدرت اله، جمشیدی نوید، بابک، قنبری، مهرداد. (1400). ارتباط بین اثربخشی کمیته حسابرسی و ریسک حسابرسی. تحقیقات حسابداری و حسابرسی، 13(52)، 185-206.
دارابی، رویا، علیزاده پیرعلی، فرخ، دبستانی، محمد. (1399). مروری بر ادبیات نظری تجربی در خصوص تأثیر شرایط اقتصاد کلان بر ریسک حسابرسی. چشم انداز حسابداری و مدیریت، 3(37)، 12-18.
زارعیان، حسین، حجازی، محسن. (1402). ارایه مدل ریسک حسابرسی مالیاتی در طرح جامع مالیاتی با رویکرد ترکیبی ISM-ANP. پژوهش های تجربی حسابداری، 13(1)، 61-80.
غلامی، حسین، دشتبانی، قاسم. (1400). بررسی رابطه بین کیفیت حسابرسی و ریسک حسابرسی در شرکتهای پذیرفته شده بورس اوراق بهادار تهران. چشم انداز حسابداری و مدیریت، 4(49)، 122-135.
فریدی مایوان، مریم، مومنی، علیرضا، مقدم، عبدالکریم. (1401). آزمون ارزیابی ریسک حسابرسی تحت تأثیر افشای مسئولیت اجتماعی شرکت ها. دانش حسابداری و حسابرسی مدیریت، 11(43)، 321-309.
همتی، داود، طلوعی اشلقی، عباس. (1401). ارزیابی ریسک حسابرسی با استفاده رویکرد داده کاوی مبتنی بر شبکه های عصبی در شرکتهای پذیرفته شده در بورس اوراق بهادارتهران. دانش حسابرسی، 5(89)، 245-216.
همتی، داود، عربصالحی، مهدی، طلوعی اشلقی، عباس. (1399). ارزیابی ریسک حسابرسی با استفاده از رویکرد داده کاوی (مطالعه موردی: تسهیلات بانکی). دانش حسابداری و حسابرسی مدیریت، 9(34)، 157-167.
الف- منابع انگلیسی:
Al-Din, S., Al-Hayik, Y., Abu-Naser, S.S. (2023). Neural Network-Based Audit Risk Prediction: A Comprehensive Study. International Journal of Academic Engineering Research (IJAER), Vol. 7 Issue 10, October - 2023, Pages: 43-51.
Beasley, M.S., Carcello, J.V., Hermanson, D.R., Neal, T.L., 2009. The audit committee oversight process. Contemporary Accounting Research, 26 (1), 65-122.
Becker, C.L., DeFond, M.L., Jiambalvo, J., Subramanyam, K.R., 1998. The effect of audit quality on earnings management. Contemporary Accounting Research, 15 (1), 1-24.
Behn, B.K., Choi, J.H., Kang, T., 2008. Audit quality and properties of analyst earnings forecasts. The Accounting Review, 83 (2), 327-349.
Caramanis, C., Lennox, C., 2008. Audit effort and earnings management. Journal of accounting and economics, 45 (1), 116-138.
Choi, J.H., Wong, T.J., 2007. Auditors’ governance functions and legal environments: An international investigation. Contemporary Accounting Research, 24 (1), 13-46.
Cohen, J. R., Hoitash, U., Krishnamoorthy, G., Wright, A. M., 2014. The effect of audit committee industry expertise on monitoring the financial reporting process. The Accounting Review 89 (1), 243-273.
Cohen, J., Krishnamoorthy, G., Wright, A., 2010. Corporate governance in the post‐Sarbanes‐ Oxley era: Auditors’ experiences. Contemporary Accounting Research, 27 (3), 751-786.
DeAngelo, L. E., 1981. Auditor size and audit quality. Journal of Accounting and Economics 3 (3), 183-199.
DeFond, M., Zhang, J., 2014. A review of archival auditing research. Journal of Accounting and Economics 58 (2), 275-326.
Deng, Mingcherng and Lu, Tong and Wen, Xiaoyan, Does Audit Risk Disclosure Improve or Impair Audit Quality and Investment Efficiency? (November 12, 2023). Available at SSRN: https://ssrn.com/abstract=4540951 or http://dx.doi.org/10.2139/ssrn.4540951.
Engel, E., Hayes, R.M., Wang, X., 2010. Audit committee compensation and the demand for monitoring of the financial reporting process. Journal of Accounting and Economics, 49 (1-2), 136-154.
Fan, J.P., Wong, T.J., 2005. Do external auditors perform a corporate governance role in emerging markets? Evidence from East Asia. Journal of Accounting Research, 43 (1), 35- 72.
Glover, S. M., D. F. Prawitt, J. J. Schultz Jr., and M. F. Zimbelman. 2003. A test of changes in auditors' fraud-related planning judgments since the issuance of SAS No. 82. Auditing: A Journal of Practice & Theory 22 (September): 237-251.
Glover, S. M., J. Jiambalvo, and J. Kennedy. 2000. Analytical procedures and audit-planning decisions. Auditing: A Journal of Practice & Theory 19 (Fall): 27-46.
Hagiha, Z. (2012). Application of Delphi method for determining the affecting factors upon audit risk model. Management Science Letters 2(1):379-390. DOI:10.5267/ j.msl. 2011.07.006.
Hammersley, J. S., K. Johnstone, and K. Kadous. 2011. How do audit seniors respond to heightened fraud risk? Auditing: A Journal of Practice & Theory 30 (3): 81-101.
Hogan, C.E., & Wilkins, M.S. (2008). Evidence on the audit risk model: Do auditors increase audit fees in the presence of internal control deficiencies? Contemporary Accounting Research, 25(1), 219-242. doi: 10.1506/car.25.1.9.
International Auditing and Assurance Standards Board (IAASB). 2011. Audit quality. An IAASB perspective. Available at: http://www.ifac.org/sites/default/files/publications/files/audit-quality-an-iaasb-per.pdf.
International Organization of Securities Commissions (IOSCO). 2009 Consultation report on transparency of firms that audit public companies. Available at: http://www.iosco.org/library/pubdocs/pdf/IOSCOPD302.pdf.
Jiambalvo, J., and W. Waller. 1984. Decomposition and assessments of audit risk. Auditing: A Journal of Practice & Theory 3 (Spring): 80-88.
Khurana, I.K., Raman, K.K., 2004. Litigation risk and the financial reporting credibility of Big 4 versus non‐Big 4 audits: Evidence from Anglo‐American countries. The Accounting Review, 79 (2), 473-495.
Kim, J.B., Lee, J.J., Park, J.C., 2015. Audit quality and the market value of cash holdings: The case of office-level auditor industry specialization. Auditing: A Journal of Practice & Theory, 34 (2), 27-57.
Krishnan, G.V., 2003. Does Big 6 auditor industry expertise constrain earnings management? Accounting horizons, 17, 1-16.
Krishnan, G.V., Visvanathan, G., 2009. Do auditors price audit committee’s expertise? The case of accounting versus nonaccounting financial experts. Journal of Accounting, Auditing & Finance, 24 (1), 115-144.
Krishnan, J., Li, C., Wang, Q., 2013. Auditor industry expertise and cost of equity. Accounting Horizons, 27 (4), 667-691.
Kurt, Ahmet C., Audit Risk and the Benefits of Employing Specialist Auditors: Evidence from Firms with Major Government Customers (August 25, 2022). Available at SSRN: https://ssrn.com/abstract=4199751 or http://dx.doi.org/10.2139/ssrn.4199751.
O. Abu-Mehsen, D., Abu Nasser, M.S., Hasaballah, M.A., Abu-Naser. S.S. (2023). Predicting Audit Risk Using Neural Networks: An In-depth Analysis. International Journal of Academic Information Systems Research (IJAISR), Vol. 7 Issue 10, October - 2023, Pages: 48-56.
O'Donnell, E., and J. J. Schultz, Jr. 2003. The influence of business-process-focused audit support software on analytical procedures judgments. Auditing: A Journal of Practice & Theory 22 (September): 265-279.
Pittman, J.A., Fortin, S., 2004. Auditor choice and the cost of debt capital for newly public firms. Journal of accounting and Economics, 37 (1), 113-136.
Porcuna-Enguix, L.; Bustos-Contell, E.; Serrano-Madrid, J.; Labatut-Serer, G. Constructing the Audit Risk Assessment by the Audit Team Leader When Planning: Using Fuzzy Theory. Mathematics 2021, 9, 3065. https://doi.org/10.3390/ math9233065.
Public Company Accounting Oversight Board (PCAOB). 2006. The process for Board determinations regarding firms’ efforts to address quality control criticisms in inspection reports. PCAOB Release No. 104-2006-077. Washington, D.C.: PCAOB.
Public Company Accounting Oversight Board (PCAOB). 2010. Consideration of registration applications from public accounting firms in Non-U.S. jurisdictions where there are unresolved obstacles to PCAOB inspections. PCAOB Release No. 2010-007. October 7.
Robin, A., Wu, Q., Zhang, H., 2017. Auditor quality and debt covenants. Contemporary Accounting Research, 34 (1), 154-185.
Robin, A.J., Zhang, H., 2015. Do industry-specialist auditors influence stock price crash risk? Auditing: A Journal of Practice & Theory, 34 (3), 47-79.
Simunic, D.A., 1980. The pricing of audit services: Theory and evidence. Journal of Accounting Research 18 (1), 161-190.
Sujana, E. & Dharmawan, N.A.S. (2023). Audit Quality Improvement and the Role of Risk: Audit as a Moderator. AABFJ Volume 17, Issue 4, P. 223-238.
Watts, R.L., Zimmerman, J.L., 1983. Agency problems, auditing, and the theory of the firm: Some evidence. Journal of law and Economics, 26 (3), 613-633.
Wilks, T. J., and M. F. Zimbelman. 2004. Decomposition of fraud-risk assessments and auditors' sensitivity to fraud cues. Contemporary Accounting Research 21 (Fall): 719-745.
Wu, Y., Wilson, M., 2016. Audit quality and analyst forecast accuracy: The impact of forecast horizon and other modeling choices. Auditing: A Journal of Practice & Theory, 35 (2), 167-185.
Zimbelman, M. F. 1997. The effects of SAS No. 82 on auditors’ attention to fraud risk factors and audit planning decisions. Journal of Accounting Research 35 (Supplement): 75-97.