Antecedents and consequences of cognitive bias of insurance industry marketing managers through digitalization
Seyed Fakhredin Alavi
1
(
)
فرید عسگری
2
(
استادیار گروه اقتصاد ، واحد ابهر ، دانشگاه آزاد اسلامی ، ابهر ، ایران
)
behzad shahrabi
3
(
Assistant Prof., Department of Management ,AliAbad Katool Branch, Islamic Azad University, AliAbad Katool, Iran
)
Babak Haj karimi
4
(
Assistant Professor, Department of Industrial Management, Azad University, Qazvin, Iran
)
Keywords: Antecedents, consequences , cognitive bias, insurance industry, digitalization,
Abstract :
The aim of this study is to identify the antecedents and consequences of cognitive bias in insurance industry marketing managers through digitalization.
The present study is an exploratory qualitative research that is thematic analysis in terms of data analysis method. The participants in this study were 20 faculty members, managers, assistants, and marketing experts in the insurance industry in Golestan province who were selected using purposive sampling using snowball method. The main data collection tool is semi-structured interview.
The results showed that a total of 12 organizing themes in the form of 4 overarching themes were identified as antecedents, and 13 organizing themes in the form of 5 overarching themes were identified as consequences of the cognitive bias of insurance industry marketing managers through digitalization.
The results of TEM analysis showed that the antecedents of cognitive bias of insurance industry marketing managers through digitalization include artificial intelligence-based customer credit risk management, organizational process optimization, data mining management, and organizational dependencies, and the consequences of cognitive bias of insurance industry marketing managers through digitalization include:
Intelligent management approaches, customer relationship management in the insurance sector, development of decision-making strategies based on artificial intelligence, strategic management of insurance company performance, and business intelligence on control and strategic actions in the insurance industry.
احمدیان، محمد و جهانی، حوریه، (1399)، سوگیریهای شناختی و ویژگیهای شخصیتی، نخستین همایش ملی رویکردهای نوین مدیریت در مطالعات میان رشتهای، گنبد کاووس
باباجانی محمدی، سعیده، مرتضوی، سعید، مهارتی، یعقوب، تهرانی، رضا. (1396). شناسایی عمدهترین سوگیریهای سرمایه گذاران در بازار سرمایه ایران با استفاده از روش فراتحلیل، فصلنامه علوم مدیریت ایران، سال دوازدهم، شماره (45)، ص 113-81.
بشیری منش، نازنین، حاجی زاده، زهرا، قبادی، سعید. (1401).
تأثیر سوگیری رفتاری مدیران بر تصمیم گیری و کیفیت اطلاعات مالی. پژوهشهای تجربی حسابداری، 12(1)، 141-160.
بشیری منش، نازنین، حاجی زاده، زهرا، و قبادی، سعید. (1401). تاثیر سوگیری رفتاری مدیران بر تصمیم گیری و کیفیت اطلاعات مالی. پژوهش های تجربی حسابداری، 12(43)، 195-224.
بیرامی، منصور، پورمحمدی، مرتضی، خرازی نوتاش، هانیه، احمدی، لیلا (1393). سوگیری شناختی پردازش اطلاعات هیجانی در افراد مضطرب، افسرده، بهنجار، فصلنامه روانشناسی شناختی، شماره (4)، ص 60-51.
جمشیدی نوید، بهاره ، قنبری، مهرداد ، جمشیدی نوید، بابک و کاکابرایی، کیوان . (1402). طراحی و اعتبار سنجی الگوی بررسی نقش سوگیری شناختی مدیران بر عملکرد شرکتهای پذیرفته شده در بورس اوراق بهادار تهران. مطالعات حسابداری و حسابرسی، 12(46)، 27-44.
درویشی، میلاد؛ ساعی، محمدجواد؛ کاردان، بهزاد (1398). بررسی عوامل مؤثر بر سوگیری بودجهای مدیران، مجله پیشرفتهای حسابداری، 11(2)، 117-150.
رحمان سرشت, حسین, ولیان, علیرضا. (1402). بررسی ابعاد شناختی تصمیمگیری در مدیران؛ آیا فرآیندهای شناختی تصمیمگیری در مدیران متفاوت است؟. پژوهش های مدیریت عمومی, 16(59), 59-84.
محمدزاده مقدم، محمدباقر، اسماعیل زاده مقری، علی، و خسروی پور، نگار. (1401). تاثیر سوگیری شناختی حسابرسان بر هوش معنوی و سبک حسابرس. دانش حسابداری و حسابرسی مدیریت، 11(41 )، 341-355.
نوری، پوریا و احمدی کافشانی، عبداله، (1397)، واکاوی مهمترین سوگیریهای شناختی در تصمیمهای کارآفرینان، دومین کنفرانس ملی کارآفرینی دانشگاه صنعتی شریف، تهران.
Acciarini, C., Brunetta, F. and Boccardelli, P. (2021), "Cognitive biases and decision-making strategies in times of change: a systematic literature review", Management Decision, Vol. 59 No. 3, pp. 638-652.
Athota, V. S. (2021). Mind over Matter and Artificial Intelligence: Building employee mental fitness for organisational success. Palgrave Macmillan. Athota, V. S., Pereira, V., Hasan, Z., Vaz, D., Laker, B., & Reppas, D. (2023). Overcoming financial planners’ cognitive biases through digitalization: A qualitative study. Journal of Business Research, 154, 113291. doi:https://doi.org/10.1016/j.jbusres.2022.08.055
Baker, H. K., & Puttonen, V. (2017). Investment Traps Exposed: Navigating Investor Mistakes and Behavioral Biases. Bingley, UK: Emerald Publishing limited.
Berthet V (2022) The Impact of Cognitive Biases on Professionals’ Decision-Making: A Review of Four Occupational Areas. Front. Psychol. 12:802439. doi: 10.3389/fpsyg.2021.802439
Bhatia, A., Chandani, A., & Chhateja, J. (2020). Robo advisory and its potential in addressing the behavioral biases of investors—A qualitative study in Indian context. Journal of Behavioral and Experimental Finance, 25(100281), 1–9.
Bonaccorsi, A., Apreda, R., & Fantoni, G. (2020). Expert biases in technology foresight. Why they are a problem and how to mitigate them. Technological Forecasting and Social Change, 151, 119855, 1–17.
Callaway, F., Jain, Y. R., van Opheusden, B., Das, P., Iwama, G., Gul, S., & Lieder, F. (2022). Leveraging artificial intelligence to improve people’s planning strategies. Proceedings of the National Academy of Sciences, 119(12), 1–11.
Caputo, F., Cillo, V., Candelo, E., & Liu, Y. (2019). Innovating through digital revolution: The role of soft skills and Big Data in increasing firm performance. Management Decision., 57(8), 2032–2051.
Carpena, F., Cole, S., Shapiro, J., & Zia, B. (2019). The ABCs of financial education: Experimental evidence on attitudes, behavior, and cognitive biases. Management Science, 65(1), 346–369.
Collino, S., & Lauto, G. (2022). Reducing Cognitive Biases Through Digitally Enabled Training. A Conceptual Framework. In Do Machines Dream of Electric Workers? (pp. 179–191). Cham: Springer.
Di Vaio, A., Palladino, R., Hassan, R., & Escobar, O. (2020). Artificial intelligence and business models in the sustainable development goals perspective: A systematic literature review. Journal of Business Research, 121, 283–314.
Ehrlinger, J., Readinger, W. O., & Kim, B. (2016). Decision-making and cognitive biases. Encyclopedia of mental health, 12, 1–20. Harris, C. G. (2020). Mitigating Cognitive Biases in Machine Learning Algorithms for Decision Making. In In Companion Proceedings of the Web Conference, pp. 775–781.
Haselton, M. G., Nettle, D., & Murray, D. R. (2015). The evolution of cognitive bias. The handbook of evolutionary psychology, 2(2), 968–987. Hentzen, J. K., Hoffmann, A., Dolan, R., & Pala, E. (2021). Artificial intelligence in customer-facing financial services: a systematic literature review and agenda for future research. International Journal of Bank Marketing., 1–38.
Jones, E. B., & Sharpe, L. (2017). Cognitive bias modification: A review of meta-analyses. Journal of affective disorders, 223, 175-183. Kaplan, A., & Haenlein, M. (2019). Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, 62(1), 15–25.
Lee J, Hamilton JT (2022) Anchoring in the past, tweeting from the present: Cognitive bias in journalists’ word choices. PLoS ONE 17(3): e0263730. https://doi.org/10.1371/journal.pone.0263730
Lennox, C. J. (2020). 2084: Artificial Intelligence, the Future of Humanity, and the God Question. California: Zondervan. Mercier, H. (2017). Confirmation bias—Myside bias. In R. F. Pohl (Ed.), Cognitive illusions: Intriguing phenomena in thinking, judgment and memory (pp. 99–114). Routledge/Taylor & Francis Group.
Murata, A. (2019). Cross-cultural difference and cognitive biases as causes of gap of mindset toward safety between approach based on hazard detection and that based on firm safety confirmation. In J. I. Kantola, S. Nazir, & T. Barath (Eds.), Advances in Human Factors, Business Management and Society - Proceedings of the AHFE 2018 International Conference on Human Factors, Business Management and Society, (pp. 582-596). (Advances in Intelligent Systems and Computing; Vol. 783).
Oschinsky, F. M., Stelter, A., & Niehaves, B. (2021). Cognitive biases in the digital age – How resolving the status quo bias enables public-sector employees to overcome restraint. Government Information Quarterly, 38(4), 101611. doi:https://doi.org/10.1016/j.giq.2021.101611
Otuteye, E., & Siddiquee, M. (2015). Overcoming cognitive biases: A heuristic for making value investing decisions. Journal of Behavioral Finance, 16(2), 140–149.
Platt, B., Waters, A. M., Schulte-Koerne, G., Engelmann, L., & Salemink, E. (2017). A review of cognitive biases in youth depression: attention, interpretation and memory. Cognition and Emotion, 31(3), 462-483.
Pompian, M. M. (2017). Risk tolerance and behavioral finance. Investments and Wealth monitor, Boston, 20(31), 34–45. Rastogi, C., Zhang, Y., Wei, D., Varshney, K. R., Dhurandhar, A., & Tomsett, R. (2020). Deciding Fast and Slow: The Role of Cognitive Biases in AI-assisted Decision-making. 1-22. arXiv preprint arXiv:2010.07938.
Singh, S. K., Edward Pereira, V., Mellahi, K., & Collings, D. G. (2021). Host country nationals characteristics and willingness to help self-initiated expatriates in the UAE. The International Journal of Human Resource Management, 32(8), 1707–1730.
Tabrizi, B., Lam, E., Girard, K., & Irvin, V. (2019). Digital transformation is not about technology. Harvard business review, 13(March), 1–6. Thomas, O. (2018) Two decades of cognitive bias research in entrepreneurship: What do we know and where do we go from here?. Manag Rev Q 68, 107–143 (2018). https://doi.org/10.1007/s11301-018-0135-9
Wasserbacher, H., & Spindler, M. (2021). Machine learning for financial forecasting, planning and analysis: recent developments and pitfalls. Digital Finance, 4, 63–88.
Xiong, W., Fan, H., Ma, L., & Wang, C. (2022). Challenges of human—machine collaboration in risky decision-making. Frontiers of Engineering Management, 9(1), 89–103.