Subject Areas :
فیروزه خیل تاش 1 , کاظم پریور 2 * , نسیم حیاتی رودباری 3 , علیرضا بدیعی 4 , بهنام صادقی 5
1 - گروه زیست شناسی، دانشکده علوم، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - گروه زیست شناسی، دانشکده علوم، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 - گروه زیست شناسی، دانشکده علوم، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 - گروه شیمی، دانشکده علوم، دانشگاه تهران، تهران، ایران.
5 - گروه ایمنی درمانی سرطان و پزشکی بازساختی، مرکز تحقیقات سرطان پستان، پژوهشکده معتمد، جهاد دانشگاهی، تهران، ایران.
Keywords:
Abstract :
1. Afzal, O., Kumar, S., Haider, MR., Ali, MR., Kumar, R., Jaggi, M. (2015). A review on anticancer potential of bioactive heterocycle quinoline. European Journal of Medicinal Chemistry, 97; 871-910.
2.Ai, Y., Liang, Y-J., Liu, J-C., He, H-W., Chen, Y., Tang, C. (2012). Synthesis and in vitro antiproliferative evaluation of pyrimido [5, 4-c] quinoline-4-(3H)-one derivatives. European Journal Of Medicinal Chemistry, 47;206-13.
3.Alibolandi, M., Mohammadi, M., Taghdisi, SM., Ramezani, M., Abnous, K. (2017). Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydrate Polymers, 155; 218-29.
4.Badiei, A., Goldooz, H., Ziarani, GM. (2011). A novel method for preparation of 8-hydroxyquinoline functionalized mesoporous silica: Aluminum complexes and photoluminescence studies. Applied Surface Science, 257(11); 4912-8.
5.Barilli, A., Atzeri, C., Bassanetti, I., Ingoglia, F., Dall’Asta, V., Bussolati, O. (2014). Oxidative stress induced by copper and iron complexes with 8-hydroxyquinoline derivatives causes paraptotic death of HeLa cancer cells. Molecular Pharmaceutics, 11(4); 1151-63.
6.Bhushan, B. (2017). Springer handbook of nanotechnology: Springer.
7.Bianco, A. (1997).Graphene: safe or toxic? The two faces of the medal. Angewandte Chemie International Edition, 19;52-97.
8.Bray, F., Ferlay, J., Soerjomataram, I., Siegel, RL., Torre, LA., Jemal, A. (2018). Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a Cancer Journal for Clinicians, 68(6);424-394.
9.Bressan, E., Ferroni, L., Gardin, C., Sbricoli, L., Gobbato, L., (2014). Graphene based scaffolds effects on stem cells commitment. Journal of Translational Medicine, 12(1); 296.
10.Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science, 282(5393); 1497-501.
11.Canel, C., Moraes, R., Dayan, F., Ferreira, D. (2000). Molecules of interest: podophyllotoxin, Phytochem, 54: 115-120.
12.Chan, SH., Chui, CH., Chan, SW., Kok, SHL., Chan, D.(2012). Synthesis of 8-hydroxyquinoline derivatives as novel antitumor agents. ACS Medicinal Chemistry Letters, 4(2);170-4.
13.Chandler, D., El-Naggar, AK., Brisbay, S., Redline, RW., McDonnell, TJ. (1994). Apoptosis and expression of the bcl-2 proto-oncogene in the fetal and adult human kidney: evidence for the contribution of bcl-2 expression to renal carcinogenesis. Human Pathology, 25(8); 789-96.
14.Chang, Y., Yang, S-T., Liu, J-H., Dong, E., Wang, Y., Cao, A. (2011). In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicology Letters, 200(3);201-10.
15.Chen, C., Hou, X., Wang, G., Pan, W., Yang, X., Zhang, Y. (2017). Design, synthesis and biological evaluation of quinoline derivatives as HDAC class I inhibitors. European Journal of Medicinal Chemistry, 133; 11-23.
16.Chen, L., Hu, P., Zhang, L., Huang, S., Luo, L., Huang, C. (2012). Toxicity of graphene oxide and multi-walled carbon nanotubes against human cells and zebrafish. Science China Chemistry, 55(10);22.
17.Chowdhury, SM., Lalwani, G., Zhang, K., Yang, JY., Neville, K., Sitharaman, B. (2013). Cell specific cytotoxicity and uptake of graphene nanoribbons. Biomaterials, 34(1); 283-93.
18.Chua, CK., Pumera, M. (2014). Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chemical Society Reviews, 43(1); 291-312.
19.Dakubo, GD. (2010). Mitochondrial genetics and cancer: Springer Science & Business Media, 20-10.
20.Deb, A., Vimala, R. (2018). Camptothec in loaded graphene oxide nanoparticle functionalized with polyethylene glycol and folic acid for anticancer drug delivery. Journal of Drug Delivery Science and Technology, 43; 333-42.
21.Ding, W-Q., Liu, B., Vaught, JL., Yamauchi, H., Lind, SE. (2005). Anticancer activity of the antibiotic clioquinol. Cancer Research, 65(8); 3389-95.
22.Ding, WQ., Lind, SE. (2009). Metal ionophores–an emerging class of anticancer drugs. IUBMB Life, 61(11); 1013-8.
23.Dreaden, EC., Alkilany, AM., Huang, X., Murphy, CJ., El-Sayed, MA. (2012). The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews,79;27-40.
24.Du, W. (2003). Towards new anticancer drugs: a decade of advances in synthesis of camptothecins and related alkaloids. Tetrahedron, 59(44); 8649-87.
25.Du, W., Jiang, X., Zhu, L. (2013). From graphite to graphene: direct liquid-phase exfoliation of graphite to produce single-and few-layered pristine graphene. Journal of Materials Chemistry A, 1(36); 10592-606.
26.El-Deiry, WS., Tokino, T., Velculescu, VE., Levy, DB., Parsons, R., Trent, JM. (1998). WAF1, a potential mediator of p53 tumor suppression. Cell, 3(4);25-17.
27.Fan, L., Ge, H., Zou, S., Xiao, Y., Wen, H., Li, Y. (2016). Sodium alginate conjugated graphene oxide as a new carrier for drug delivery system. International Journal of Biological Macromolecules, 93; 582-90.
28.Fiorillo, M., Verre, AF., Iliut, M., Peiris-Pagés, M., Ozsvari, B., Gandara, R. (2015). Graphene oxide selectively targets cancer stem cells, across multiple tumor types: implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget, 6(6); 3553.
29.Fulda, S., Debatin, K-M. (2006). Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 25(34); 4798.
30.Gupte, A., Mumper, RJ. (2009). Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treatment Reviews,35(1);32-46.
31.Hanahan, D., Weinberg, RA. (2000). The hallmarks of cancer. Cell, 100(1); 57-70.
32.Helsel, ME., Franz, KJ. (2015). Pharmacological activity of metal binding agents that alter copper bioavailability. Dalton Transactions, 44(19); 8760-70.
33.Hou, L., Shi, Y., Jiang, G., Liu, W., Han, H., Feng, Q. (2016). Smart nanocomposite hydrogels based on azo crosslinked graphene oxide for oral colon-specific drug delivery. Nanotechnology, 27(31); 315105.
34.Hummers, Jr WS., Offeman, RE. (1985). Preparation of graphitic oxide. Journal of the American Chemical Society, 80(6); 1339.
35.Hussien, NA., Işıklan, N., Türk, M. (2018). Aptamer-functionalized magnetic graphene oxide nanocarrier for targeted drug delivery of paclitaxel. Materials Chemistry and Physics, 211; 479-88.
36.Jafarizad, A., Aghanejad, A., Sevim, M., Metin, Ö., Barar, J., Omidi, Y. (2017). Gold Nanoparticles and reduced graphene oxide‐gold nanoparticle composite materials as covalent drug delivery systems for breast cancer treatment. Chemistry Select, 2(23); 6663-72.
37.Jiang, H., Taggart, JE., Zhang, X., Benbrook, DM., Lind, SE., Ding, W-Q. (2011). Nitroxoline(8-hydroxy-5-nitroquinoline) is more a potent anti-cancer agent than clioquinol (5-chloro-7-iodo-8-quinoline). Cancer Letters, 312(1); 11-7.
38.Krawczyk, M., Pastuch-Gawolek, G., Mrozek-Wilczkiewicz, A., Kuczak, M., Skonieczna, M., Musiol, R. (2019). Synthesis of 8-hydroxyquinoline glycoconjugates and preliminary assay of their β1, 4-GalT inhibitory and anti-cancer properties. Bioorganic Chemistry, 84; 326-38.
39.Ku, SH., Park, CB. (2013). Myoblast differentiation on graphene oxide. Biomaterials, 34(8); 2017-23.
40.Lei, H., Xie, M., Zhao, Y., Zhang, F., Xu, Y., Xie, J. (2016). Chitosan/sodium alginate modificated graphene oxide-based nanocomposite as a carrier for drug delivery. Ceramics International, 42(15); 1779.
41.Liu, W., Li, X., Wong, Y-S., Zheng, W., Zhang, Y., Cao, W. (2012). Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. Acs Nano, 6(8); 6578-91.
42.Liu X, Cheng X, Wang F, Feng L, Wang Y, Zheng Y, et al. Targeted delivery of SNX-2112 by polysaccharide-modified graphene oxide nanocomposites for treatment of lung cancer. Carbohydrate Polymers, 185; 85-95.
43.Liu, Y-C., Chen, Z-F., Song, X-Y., Peng, Y., Qin, Q-P., Liang, H. (2013). Synthesis, crystal structure, cytotoxicity and DNA interaction of 5, 7-dibromo-8-quinolinolato-lanthanides. European Journal of Medicinal Chemistry, 59; 168-75.
44.Liu, Y., Zhong, H., Qin, Y., Zhang, Y., Liu, X., Zhang, T. (2016). Non-covalent hydrophilization of reduced graphene oxide used as a paclitaxel vehicle. RSC Advances, 6(36); 30184-93.
45.Liu, Z., Robinson, JT., Sun, X., Dai, H. (2008). Pegylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society, 130(33); 10876-7.
46.Livak, KJ., Schmittgen, TD. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods, 25(4); 402-8.
47.Luiza, BdO., Borgati, TF., de Freitas, RP., Ruiz, AL., Marchetti, GM., de Carvalho, JE. (2014). Synthesis and antiproliferative activity of 8-hydroxyquinoline derivatives containing a 1, 2, 3-triazole moiety. European Journal of Medicinal Chemistry, 84; 595-604.
48.Lv, Y., Tao, L., Bligh, SA., Yang, H., Pan, Q., Zhu, L. (2016). Targeted delivery and controlled release of doxorubicin into cancer cells using a multifunctional graphene oxide. Materials Science and Engineering: C, 59; 652-60.
49.Masoudipour, E., Kashanian, S., Maleki, N. (2017). A targeted drug delivery system based on dopamine functionalized nano graphene oxide. Chemical Physics Letters, 668; 56-63.
50.Matlack, KE., Tardiff, DF., Narayan, P., Hamamichi, S., Caldwell, KA., Caldwell, GA. (2014). Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proceedings of the National Academy of Sciences, 201(40); 22-28.
51.Mazur, J., Roy, K., Kanwar, JR. (2018). Recent advances in nanomedicine and survivin targeting in brain cancers. Nanomedicine, 13(1); 105-37.
52.Milacic, V., Jiao, P., Zhang, B., Yan, B., Dou, QP. (2009). Novel 8-hydroxylquinoline analogs induce copper-dependent proteasome inhibition and cell death in human breast cancer cells. International Journal of Oncology, 35(6); 1481-91.
53.Paulchamy, B., Arthi, G., Lignesh, B. (2015). A simple approach to stepwise synthesis of graphene oxide nanomaterial. Journal of Nanomedicine & Nanotechnology, 6(1); 1.
54.Pierson, HO. (2012). Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications: William Andrew,
55. Prachayasittikul, V., Prachayasittikul, S., Ruchirawat, S., Prachayasittikul, V. (2013). 8-hydroxy quinolines: a review of their metal chelating properties and medicinal applications. Drug Design, Development and Therapy, 7; 1157.
56.Priyadarsini, RV., Murugan, RS., Maitreyi, S., Ramalingam, K., Karunagaran, D., Nagini, S. (2010). The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer(HeLa) cells through p53 induction and NF-κB inhibition. European Journal of Pharmacology. 649(1-3); 84-91.
57.Qin, Q-P., Chen, Z-F., Qin, J-L., He, X-J., Li, Y-L., Liu, Y-C. (2015). Studies on antitumor mechanism of two planar platinum(II) complexes with 8-hydroxyquinoline: synthesis, characterization, cytotoxicity, cell cycle and apoptosis. European Journal of Medicinal Chemistry, 92; 302-13.
58.Rajpal, S., Venook, A. (2004). Targeted therapy in colorectal cancer. Clinical Advances in Hematology & Oncology: H&O, 4(2); 124-32.
59.Rao, Z., Ge, H., Liu, L., Zhu, C., Min, L., Liu, M. (2018). Carboxymethyl cellulose modified graphene oxide as pH-sensitive drug delivery system. International Journal of Biological Macromolecules, 107; 1184-92.
60.Sahu, A., Choi, WI., Tae, G. (2012). A stimuli-sensitive injectable graphene oxide composite hydrogel. Chemical Communications, 48(47); 5820-2.
61.Sasidharan, A., Panchakarla, L., Chandran, P., Menon, D., Nair, S., Rao, C. (2011). Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale, 3(6); 2461-4.
62.Sasidharan, A., Panchakarla, LS., Sadanandan, AR., Ashokan, A., Chandran, P., Girish, CM. (2012). Hemo compatibility and macrophage response of pristine and functionalized graphene. Small, 8(8); 1251-63.
63.Sharma, GN., Dave, R., Sanadya, J., Sharma, P., Sharma, K. (2010). Various types and management of breast cancer: an overview. Journal of Advanced Pharmaceutical Technology & Research, 1; 109-112.
64.Shen, Ay., Wu, Sn., Chiu, Ct. (1999). Synthesis and cytotoxicity evaluation of some 8‐hydroxyquinoline derivatives. Journal of Pharmacy and Pharmacology, 51(5); 543-8.
65.Singh, SK., Singh, MK., Kulkarni, PP., Sonkar, VK., Grácio, JJ., Dash, D. (2012). Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano, 6(3); 2731-40.
66.Singh, SK., Singh, MK., Nayak, MK., Kumari, S., Shrivastava, S., Grácio, JJ. (2011). Thrombus inducing property of atomically thin graphene oxide sheets. Acs Nano, 5(6); 4987-96.
67.Srivastava, V., Negi, AS., Kumar, J., Gupta, M., Khanuja, SP. (2005). Plant-based anticancer molecules: a chemical and biological profile of some important leads. Bioorganic & Medicinal Chemistry, 13(21); 5892-908.
68.Stewart, BW. (1994). Mechanisms of apoptosis: integration of genetic, biochemical, and cellular indicators. JNCI: Journal of the National Cancer Institute, 86(17); 1286-96.
69.Tan, J., Meng, N., Fan, Y., Su, Y., Zhang, M., Xiao, Y. (2016). Hydroxypropyl-β-cyclodextrin–graphene oxide conjugates: Carriers for anti-cancer drugs. Materials Science and Engineering: C, 61; 681-7.
70.Thapa, RK., Kim, JH., Jeong, J-H., Shin, BS., Choi, H-G., Yong, CS. (2017). Silver nanoparticle-embedded graphene oxide-methotrexate for targeted cancer treatment. Colloids and Surfaces B: Biointerfaces, 153; 95-103.
71.Vajtai, R. (2013). Springer handbook of nanomaterials: Springer Science & Business Media,
72.Wang, C., Xu, H., Liang, C., Liu, Y., Li, Z., Yang, G. (2013). Iron oxide polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano, 7(8); 6782-95.
73.Wang, N., Świtalska, M., Wu, M-Y., Imai, K., Ngoc, TA., Pang, C-Q. (2014). Synthesis and in vitro cytotoxic effect of 6-amino-substituted 11H-and 11Me-indolo [3, 2-c] quinolines. European Journal of Medicinal Chemistry, 78; 314-23.
74.Wang, Y., Liu, J., Liu, L., Sun, DD. (2011). High-quality reduced graphene oxide-nanocrystalline platinum hybrid materials prepared by simultaneous co-reduction of graphene oxide and chloroplatinic acid. Nanoscale Research Letters, 6(1); 241.
75.Wei, G., Dong, R., Wang, D., Feng, L., Dong, S., Song, A. (2014). Functional materials from the covalent modification of reduced graphene oxide and β-cyclodextrin as a drug delivery carrier. New Journal of Chemistry. 38(1); 140-5.
76.Wei, J., Vo, T., Inam, F. (2015). Epoxy/graphene nanocomposites–processing and properties: a review. RSC Advances, 5(90); 73510-24.
77.Wolf, EL. (2014). Applications of graphene: an overview: Springer,
78.Xiao, Z., Lei, F., Chen, X., Wang, X., Cao, L., Ye, K, Design, synthesis, and antitumor evaluation of quinoline‐imidazole derivatives. Archiv der Pharmazie, 351(6); 1700407.
79.Xu, H., Chen, W., Zhan, P., Liu, X. (2015). 8-Hydroxyquinoline: a privileged structure with a broad-ranging pharmacological potential. MedChemComm, 6(1); 61-74.
80.Yadav, N., Kumar, N., Prasad, P., Shirbhate, S., Sehrawat, S., Lochab, B. (2018). Stable dispersions of covalently tethered polymer improved graphene oxide nanoconjugates as an effective vector for siRNA delivery. ACS Applied Materials & Interfaces, 10(17); 14577-93.
81.Yang, D., Li, T., Xu, M., Gao, F., Yang, J., Yang, Z. (2014). Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons. Nanomedicine, 9(16); 2445-55.
82.Yang, H., Bremner, DH., Tao, L., Li, H., Hu, J., Zhu, L. (2016). Carboxymethyl chitosan-mediated synthesis of hyaluronic acid-targeted graphene oxide for cancer drug delivery. Carbohydrate Polymers, 135; 72-8.
83.Yoon, HH., Bhang, SH., Kim, T., Yu, T., Hyeon, T., Kim, BS. (2014). Dual Roles of Graphene oxide in chondrogenic differentiation of adult stem cells: cell‐adhesion substrate and growth factor‐delivery carrier. Advanced Functional Materials, 24(41); 6455-64.
84.Zhai, S., Yang, L., Cui, QC., Sun, Y., Dou, QP., Yan, B. (2010). Tumor cellular proteasome inhibition and growth suppression by 8-hydroxyquinoline and clioquinol requires their capabilities to bind copper and transport copper into cells. JBIC Journal of Biological Inorganic Chemistry, 15(2); 259-69.
85.Zhang, SL., Zhai, X., Zhang, SJ., Yu, HH., Gong, P. (2010). Synthesis and cytotoxicity studies of quinoline-3-carbonitrile derivatives. Chinese Chemical Letters, 21(8); 939-42.
86.Zhang, X., Yin, J., Peng, C., Hu, W., Zhu, Z., Li, W. (2011). Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon, 49(3); 986-95.
87.Zhang, Y., Ali, SF., Dervishi, E., Xu, Y., Li, Z., Casciano, D. (2010). Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano, 4(6); 3181-6.
88.Zheng, XT., Ma, XQ., Li, CM. (2016). Highly efficient nuclear delivery of anti-cancer drugs using a bio-functionalized reduced graphene oxide. Journal of Colloid and Interface Science, 467; 35-42.