Subject Areas :
صادق قربانی دالینی 1 , محمد حسین سنگتراش 2 * , نگار آذرپیرا 3 * , رامین یعقوبی 4 , حمید رضا سلیمانی لیچایی 5
1 - گروه زیست شناسی، دانشگاه سیستان و بلوچستان، زاهدان، ایران.
2 - گروه زیست شناسی، دانشگاه سیستان و بلوچستان، زاهدان، ایران
3 - مرکز تحقیقات پیوند و ترمیم اعضا، دانشگاه علوم پزشکی شیراز، شیراز، ایران
4 - مرکز تحقیقات پیوند و ترمیم اعضا، دانشگاه علوم پزشکی شیراز، شیراز، ایران.
5 - گروه سلولهای بنیادی و پزشکی ترمیمی، پژوهشگاه ملی مهندسی ژنتیک و زیست فناوری، تهران، ایران.
Keywords:
Abstract :
1.Affourtit, C., Alberts, B., Barlow, J., Carré, J.E.Wynne, A.G. (2018). Control of pancreatic β-cell bioenergetics. Biochemical Society Transactions, 46(3);555-564
2.Arnes, L., Hill, J.T., Gross, S., Magnuson, M.A.Sussel, L. (2012). Ghrelin expression in the mouse pancreas defines a unique multipotent progenitor population. PLoS ONE, 7(12);e52026
3.Bakhti, M., Böttcher, A.Lickert, H. (2018). Modelling the endocrine pancreas in health and disease. Nature reviews. Endocrinology, 10.1038/s41574-018-0132-z
4.Baltrusch, S.Tiedge, M. (2006). Glucokinase regulatory network in pancreatic β-cells and liver. Diabetes, 55(12);S55-S64.
5.Basco, D., Zhang, Q., Salehi, A., Tarasov, A., Dolci, W., Herrera, P. (2018). α-cell glucokinase suppresses glucose-regulated glucagon secretion. Nature Communications, 9(1);546.
6.Brereton, M.F., Vergari, E., Zhang, Q.Clark, A. (2015). Alpha-, Delta- and PP-cells. Journal of Histochemistry & Cytochemistry, 63(8);575-591.
7.Citro, A., Ott, H.C. (2018). Can we re-engineer the endocrine pancreas? Current diabetes reports, 18(11);122.
8.Fadista, J., Vikman, P., Laakso, E.O., Mollet, I.G., Esguerra, J.L., Taneera, J., et al. (2014). Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 111;13924-13929.
9.Hashemitabar, M., Heidari, E. (2018). Redefining the signaling pathways from pluripotency to pancreas development: In vitro β-cell differentiation. Journal of Cellular Physiology, 10.1002/jcp.27736
10.Heimberg, H., De Vos, A., Pipeleers, D., Thorens, B.Schuit, F. (1995). Differences in glucose transporter gene expression between rat pancreatic alpha- and beta-cells are correlated to differences in glucose transport but not in glucose utilization. J Biol Chem, 270(15);8971-8975.
11.Jansson, L., Barbu, A., Bodin, B., Drott, C.J., Espes, D., Gao, X., et al. (2016). Pancreatic islet blood flow and its measurement. Upsala Journal of Medical Sciences, 121(12);81-95.
12.Kaido, T., Yebra, M., Cirulli, V., Rhodes, C., Diaferia, G.Montgomery, A.M. (2006). Impact of defined matrix interactions on insulin production by cultured human beta-cells: effect on insulin content, secretion, and gene transcription. Diabetes, 55(10);2723-2729.
13.Komatsu, M., Takei, M., Ishii, H.Sato, Y. (2013). Glucose-stimulated insulin secretion: A newer perspective. Journal of diabetes investigation, 4(6); 511-516.
14.Lawlor, N., George, J., Bolisetty, M., Kursawe, R., Sun, L., Sivakamasundari, V., et al. (2017). Single-cell transcriptomes identify human islet cell signatures and reveal cell-type-specific expression changes in type 2 diabetes. Genome research, 27(2); 208-222.
15.Layden, B.T., Durai, V.Lowe, J., William L. (2010). G-protein-coupled receptors, pancreatic islets, and diabetes. Nature Education, 3(9);13.
16.Lifson, N., Lassa, C.V.Dixit, P.K. (1985). Relation between blood flow and morphology in islet organ of rat pancreas. American Journal of Physiology-Endocrinology and Metabolism, 249(1); E43-E48.
17.Lindbloom-Hawley, S., LeCluyse, M., Vandersande, V., Lushington, G.H., Schermerhorn, T. (2014). Cloning and characterization of feline islet glucokinase. BMC Veterinary Research, 10;130.
18.Matschinsky, F.M. (2002). Regulation of pancreatic beta-cell glucokinase: from basics to therapeutics. Diabetes, 51(3); S394-404.
19.Morgan, N.G., Richardson, S.J. (2018). Fifty years of pancreatic islet pathology in human type 1 diabetes: insights gained and progress made. Diabetologia, 61(12); 2499-2506.
20.Pang, K., Mukonoweshuro, C.Wong, G.G. (1994). Beta cells arise from glucose transporter type 2(Glut2)-expressing epithelial cells of the developing rat pancreas. Proc Natl Acad Sci U S A, 91(20);9559-9563.
21.Perley, M.J., Kipnis, D.M. (1967). Plasma insulin responses to oral and intravenous glucose: Studies in normal and diabetic subjects. Journal of Clinical Investigation, 46(12); 1954-1962
22.Qi, M., Barbaro, B., Wang, S., Wang, Y., Hansen, M.Oberholzer, J. (2009). Human pancreatic islet isolation: Part II: purification and culture of human islets. Journal of Visualized Experiments : JoVE, 10.3791/1343(27);e1343
23.Qi, M., Barbaro, B., Wang, S., Wang, Y., Hansen, M., Oberholzer, J. (2009). Human pancreatic islet isolation: Part I: digestion and collection of pancreatic tissue. Journal of visualized experiments : JoVE, 10.3791/1125(27);e1125
24.Röder, P.V., Wu, B., Liu, Y.Han, W. (2016). Pancreatic regulation of glucose homeostasis. Experimental & Molecular Medicine, 48(3); e219.
25.Song, M.-Y., Wang, J., Ka, S.-O., Bae, E.J.Park, B.-H. (2016). Insulin secretion impairment in Sirt6 knockout pancreatic β cells is mediated by suppression of the FoxO1-Pdx1-Glut2 pathway. Scientific reports, 6;30321.
26.Straub, S.G., James, R.F., Dunne, M.J., Sharp, G.W. (1998). Glucose activates both K(ATP) channel-dependent and K(ATP) channel-independent signaling pathways in human islets. Diabetes, 47(5);758-763.
27.Thompson, E.M., Sollinger, J.L., Opara, E.C.Adin, C.A. (2018). Selective osmotic shock for islet isolation in the cadaveric canine pancreas. Cell Transplantation, 27(3); 542-550.
28.Tiedge, M., Lenzen, S. (1991). Regulation of glucokinase and GLUT-2 glucose-transporter gene expression in pancreatic B-cells. Biochem J, 279 ( Pt 3);899-901.
29.Xin, Y., Kim, J., Okamoto, H., Ni, M., Wei, Y., Adler, C., et al. (2016). RNA sequencing of single human islet cells reveals type 2 diabetes genes. Cell Metabolism, 24(4);608-615.
30.Zhang, B., Lai, G., Wu, J., Sun, R., Xu, R., Yang, X., et al. (2016). 20-HETE attenuates the response of glucose-stimulated insulin secretion through the AKT/GSK-3β/Glut2 pathway. Endocrine, 54(2); 371-382.