Investigation of genetic structure of sanjabi sheep using microsatellite markers
Subject Areas :reza sayed sharifi 1 * , sajad Badbarin 2 , nemat hedayat evrigh 3 , jamal seif davati 4 , sima savar sofla 5
1 - Associate Professorin Animal Science, University of Mohaghegh Ardabili, Ardabil, Iran.
2 - Department, Kermanshah Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Kermakshah ,Iran
3 - Associate Professorin Animal Science, University of Mohaghegh Ardabili, Ardabil, Iran 2- Assistant Professors, Animal Science
4 - Associate Professorin Animal Science, University of Mohaghegh Ardabili, Ardabil, Iran 2- Assistant Professors, Animal Science
5 - Agricultural Research Education and Extension Organization (AREEO), Animal Science
Keywords: Genetic structure, Microsatellite markers, sheep sanjabi,
Abstract :
Sanjabi sheep is one of the valuable breeds of sheep in the west of the country, which is very important in terms of meat and wool production. Considering the importance of native sheep breeds and their breeding in order to achieve production with more quantity and quality, identification of genetic structure and estimation of relevant parameters (number of observed and effective alleles, heterozygosity, Shannon index, etc.) The present study was performed. . The study population consisted of 100 sanjabi rams and ewes located in Mehregan station of Kermanshah province that were randomly selected. DNA extraction was performed by salt method. PCR reaction was performed using 10 microsatellite markers. Amplified DNA fragments were stained on acrylamide gel and detected by silver nitrate method. Alleles were scored according to their size and compared to the standard index PUC8 of Fermentase Company. The results of this study showed that all markers were polymorphic. The mean number of observed and effective alleles for all markers was calculated to be 4.5 and 2.9012, respectively. The highest and lowest expected heterozygosity were obtained in OarFCB11 and BMS2721 markers equal to 0.7548 and 0.5619, respectively. The expected heterozygosity for all markers (genetic diversity) was 0.6487. According to the obtained results, it can be said that the studied sheep have a desirable level of diversity and can be achieved by high breeding by breeding and selection of superior livestock.
منابع
1- دانشور آملی، ع ر.، اسماعیل خانیان، س.، سنجابی، م ر.، میرهادی، س ا. 1398. بررسی چند شکلی تعدادی از نشانگرهای ریزماهواره در یک جمعیت از گوسفندان بلوچی. پژوهش های تولیدات دامی. 10(25): 103-96.
2- رزبان، و.، اسماعیل خانیان، س.، واعظ ترشیزی، ر. 1388. بررسی پلی مورفیسم 17 نشانگر میکروساتلایت در جمعیت گوسفند نژاد بلوچی. مجله علوم دامی ایران. 40(3): 17-11.
3- رهبر، ر.، چهارآئین، ب.، سلیمانی، ب. 1395. ارتباط چند شکلی نشانگرهای ریزماهواره با صفات تولیدی و تولید مثلی گوسفند سنجابی. ژنتیک نوین. 11(3): 481-475.
4- زاهدی، ز.، اسماعیل خانیان، س.، واعظ ترشیزی، ر. 1387. مطالعه چند شکلی 12 نشانگر ریز ماهواره در گوسفند ان بلوچی ایستگاه عباس آباد مشهد. پژوهش و سازندگی. 78: 46-39.
5- سالاری، ا.، امیری نیا، س.، قره داغی، ع ا.، شیری، س ا.، خدرزاده، ص. 1389. بررسی تنوع ژنتیکی گوسفند کردی خراسان با استفاده از نشانگرهای ریز ماهواره. مجله دانش و پژوهش علوم دامی. 7: 17-11.
6- نقویان، س.، حسنی، س.، آهنی آذری، م.، خان احمدی، ع ر.، ساقی، د ع.، مامیزاده، ن. 1393. مطالعه تنوع ژنتیکی گوسفند کردی شیروان با استفاده از نشانگرهای ریزماهواره و مقایسه ضریب هم خونی به دست آمده با استفاده از اطلاعات شجره ای. نشریه پژوهشهای علوم دامی. 24(1): 105-93.
7.Buchanan, F.C., Crawford, A.M. (1992). Ovine dinucleotide repeat polymorphism at the MAF214 locus. Animal Genetic, 23; 394.
8.Buchanan, F.C., Crawford, A.M. (1993). Ovine microsatellites at the OarFCB11, OarFCB128, OarFCB193, OarFCB266, and OarFCB304 loci. Anim. Genet, 24; 145.
9.David, C M G., Quirino, C R., Vega, W H O., Bartholazzi Junior, A., Madella-Oliveira, A F., Costa, R L D. (2018). Diversity of indigenous sheep of an isolated population. BMC Veterinary Research, 14; 1-7.
10.Dudu, A., Popa, G O., Ghița, E., Pelmuș, R., Lazar, C., Costache, M. (2020). Assessment of genetic diversity in main local sheep breeds from Romania using microsatellite markers. Archives Animal Breeding, 63(1); 53-59.
11.FAO. (2000). World watch list for domestic animal diversity. Third edition. Rome. Italy.
12.Khan, MA., Massod, MT., Rashid, N., Ud-Din, Z., Jan, S., Din, M. (2019). SSR based characterization of indigenous harnai sheep breed of Balochistan. Journal of Animal Research, 9(1); 27-33.
13.Kusza, S., Dimov, D., Nagy, I., Bosze, Z., Javor, A., Kukovics, S. (2010). Microsatellite analysis to estimate genetic relationships among five Bulgarian sheep breeds. Genetics and Molecular Biology, 33(1); 51-56.
14.Luis, A., Salazar, M., Hirata, H., Cavalli, A.S., Machado, M.O., Rosario, D.C. (1998). Optimized procedure for DNA isolation from fresh and cryopreserved clotted human blood useful in clinical molecular testing. Clinical Chemistry, 44; 1748-1750.
15.Mohammadi, Y., Rashidi, A., Mokhtari, MS., Esmailizadeh, AK. (2010). Quantitative genetic analysis of growth traits and Kleiber ratios in Sanjabi sheep. Small Ruminant Research, 93; 88-93.
16.Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetic, 89; 583-590.
17.Oldenbroek, K. (2007). Utilisation and conservation of farm animal genetic resources. Wageningen Academic Publishers, p:64.
18.Peakall, R., Smouse, P. E. (2012). Gen AlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research - an update. Bioinformatics, 28; 2537-2539.
19.Rendo, F., Iriondo, M., Jugo, BM., Mazon, LI., Aguirre, A., Vicario, A. (2004). Tracking diversity and differentiation in six sheep breeds from the North Iberian Peninsula through DNA variation. Small Ruminant Research, 52; 195-202.
20.Shannon, C. E., Weaver, W.(1949). The mathematical theory of communication, urbana: university of illinois press.
21.Sharifi Seidani, E., Amirnia, C., Lavaf, A., Farasati, C., Aminashar, M. (2009). Genetic variation among different ecotypes of the Iranian Sanjabi sheep. Journal of Animal and Veterinary Advances, 8(6); 1173-1176.
22.Vajed Ebrahimi, MT., Mohammadabadi, MR., Esmailizadeh, A. (2017). Using microsatellite markers to analyze genetic diversity. Archives Animal Breeding, 60; 183-189.
23.Yeh, F. C., Yang, R., Boyle, T. (1999). POPGENE version 1.31, Microsoft windows based free ware for population genetic analysis, University of Alberta. Edmonton. Canada.
_||_