Expression and comparison of growth gene (IGF-1) in native and non-native rainbow trout (Oncorhynchus mykiss) in three different sizes
Subject Areas :Mohammad Reza Ghomi 1 * , Maryam Haghi 2 , Mahmoud Mohseni 3 , Masoud Ghane 4
1 - Department of Fisheries, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
2 - Department of Fisheries, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
3 - 3Caspian Sea International Sturgeon Research Institute, Agricultural Research Education and Extension Organization, Rasht, Iran
4 - Department of Microbiology, Tonekabon branch, Islamic Azad University, Tonekabon, Iran
Keywords: Body Size, Growth Gene (IGF-I), genetic diversity, Rainbow trout,
Abstract :
Inroduction & Objective: Fish growth is regulated by many environmental and physiological factors and is shaped by the genetic background of each organism. Insulin-like growth factor I (IGF-I) plays an important role in various biological processes of fish. This study aimed to examine the rate of expression of IGF-I mRNA growth gene at different stages of growth in local and imported rainbow trout in Iran. Materials and Methods: Hence, local and imported trout fish in three sizes of small, medium and large, with a total mean weight and size of 453.66±244.34 gr and 32.25±6.78 cm, respectively, were obtained from the fish breeding center in Guilan province (Rasht). First, 20 mg samples of the liver tissue of the fish were obtained under sterile conditions after anesthesia from both local and imported breeds. RNA extraction and cDNA synthesis were performed according to the RT-PCR standard method in the Genetics Research Laboratory of Tonekabon Azad University. Results: The results showed that the expression of IGF-I gene was significantly different between local and imported breeds so that the highest and lowest gene levels were in the small size of imported breed and medium size of local breed, respectively (P<0.05). However, there was no significant relationship between the amount of gene expression and weight and length of fish (P˃0.05), while IGF-I expression showed a decreasing trend with an increase in the fish size.Conclusion: These findings suggest that the IGF-I gene may play a key role in the growth and development of rainbow trout.
-اکبرزاده، آ.، حق بین، ک.، نعمت اللهی، م.، محجوبی، ف.، فرحمند، ح.، کلنگی میاندره، ح. 1391. انتخاب مناسب ترین ژن های رفرنس جهت مطالعات PCR time-Real در مراحل ابتدایی زیست تاسماهی ایرانی، persicus. Acipense مجله بوم شناسی آبزیان، دوره 2، شماره 3، ص 1-13.
2-ایرجی، س.، مناف فر، ر.، اسماعیلی فریدونی، ا.، زارع، ص. 1394. تفکیک دو سویه ی تجاری ماهی قزل آلای ایرانی و فرانسوی با استفاده از تکنیک PCR-RFLP. مجله دامپزشکی ایران، دوره یازدهم، شماره 4، ص 6-9.
3-پیکان حیرتی، ف.، مجازی امیری، ب.، فرحمند، ح. 1388. توالی یابی فاکتور رشد شبه انسولبن-یک IGF-I در فیل ماهی Huso huso و بررسی بیان آن در بافت های مختلف. مجله زنتیک نوین، شماره 3، ص 17-25.
4-زاهدی، س.، اکبرزاده، آ.، مهرزاد، ج.، نوری؛ ا.، هرسیج، م. 1398. مقایسه پارامترهای رشد، هرمون کورتیزول و بیان ژن های مرتبط با استرس و رشد ماهی قزل آلای رنگان کمان (Oncorhynchus mykiss) در دو سیستم باز و بازگردشی. مجله پژوهش های ماهی شناسی کاربردی، شماره 3، ص 109-124.
5-عبدالله نژاد، ز. 1391. بررسی بیان ژن هورمون رشد طی مراحل تکاملی در تاسماهی سیبری (Acipenser baerii). دانشکده منابع طبیعی. دانشگاه گیلان، کلونینگ ژن هورمون رشد(GH) ماهی (Huso huso) در سازه های لنتی ویروسی و غیر ویروسی و بررسی بیان ژن در سلول های بنیادی جنینی انسانی، دوره 13، شماره1، صفحات 10-1.
6-یوسفیان، م.، بینایی، م.، قره ویسی ش.، بحرکاظمی م.،1391. مقایسه فاکتورهای بیوشیمیایی پیش مولد ماهی قزل آلای رنگین کمان، Oncorhynchus mykiss قزل آلای رنگین کمان ایرانی و فرانسوی. مجله شیلات دانشگاه آزاد اسلامی واحد آزادشهر، سال ششم، شماره 4، صفحات 14-9.
7.Akbarzadeh, A., Farahmand, H., Mahjoubi, F., Nematollahi, M. A., Leskinen, P., Rytkonen, K. (2011). The transcription of L-gulono-gamma-lactone oxidase, a key enzyme for biosynthesis of ascorbic acid, during development of Persian sturgeon Acipenser persicus. Comparative. Biochemistry and Physiology, 158; 282-288.
8.Beckman, B. R., Larsen, D. A., Moriyama, S., Lee-Pawlak, B., DickhoV, W. W. (1998). Insulin-like growth factor-I and environmental modulation of growth during smoltification of spring chinook salmon (Oncorhynchus tshawystscha). Gen. Comp. Endocrinol. 109;325–335.
9.Carrera, E.; Garcia, T.; Cespedes, A.; Gonzalez, I.; Sanz, B.; Hernandez, P.E., Martin, R. (1999). Identification of Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) using PCR amplification and restriction analysis of the mitochondrial cytochrome b gene. Journal of Food Protection, 61; 482-486.
10.Castillo, J., Codina, M., Martinez, M.L., Navarro, I., Gutierrez, J. (2004). Meatbolic and mitogenic effects of IGF-I and insulin on muscle cells of rainbow trout. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, (286); 935-941.
11.De Santis, C., Smith Keune, C., Jerry, D.R. (2010). Normalizing RT-qPCR Data: Are we getting the right answers? An appraisal of normalization approaches and internal reference genes from a case study in the finfish lates calcarifer. Marine Biotechnology, 13(2); 170-180.
12.Din, S.Y., Hurvitz, A., Goldberg, D., Jackson, K., Levavi- Sivan, B., and Degani, G. (2008). Cloning of Russian sturgeon, (Acipenser gueldenstaedtii) growth hormone and insulin like growth factor I and their expression in male and female fish during the first period of growth. Journal of endocrinology investment, (31); 201-210.
13.Duan, C. (1998). Nutritional and developmental regulation of insulin- like growth factors in fish. Journal of Nutrition, 128(2); 306–314.
14.Duan, C. (1997). The insulin-like growth factor system and its biological actions in fish. American Zoologist., 37(6); 491-503.
15.Dunham, R. A. (2004). Aquaculture and fisheries biotechnology: genetic approaches, department of fisheries and allied aquacultures auburn, university alabama USA, CABI Publishing, P 7-13, 160-192, 207-211.
16.Gjedrem, T. (2000). Genetic improvement of coldwater fish species. Aquaculture Research, (3); 25–33.
17.Gorjipoor, E., Kamaei, K., Bashti, T., Zargham, D., Razmi, K., Gandomkar, H.A. (2009). Comparison of growth and survival rate between import andnative rainbow trout (Oncorhynchus mykiss). Iranian Fisheries Science Research Institute, 40;. 88.1252.
18.IFSA. Iran fisheries organization, Deputy of planning and development manager, Office of Budget and Planning, 2015. P 33.
19.Kocmarek, A.L., Ferguson, M., Danzmann, R.G. (2104). Differential gene expression in small and large rainbow trout derived from two seasonal spawning groups. BMC Genomics, (15); P 9.
20.Liang, Y.H., Cheng, C.H., Chan, K.M. (1996). Insulin-like growth factor-I Ea2 is the
predominantly expressed form of IGF in common carp, (Cyprinus carpio). Molecular Marine Biology and Biotechnology, 5; 145-152
21.Livak, K.J. Schmittgen, T.D. (2001). Analysis of relative gene expression data using
real-time quantitative PCR and the 2-ΔΔC T method. Methods, (25);402–408.
22.Mommsen, T.P. (1998). Growth and metabolism. In: The physiology of fishes, Edited by D. H. Evans, 2nd ed., CRC press; 65-97.
23.Nazari, R.M., Modanloo, M., Ghomi, M.R., Ovissipor, M.R. (2010). Application of synthetic hormone LHRH-A2 on the artificial propagation of Persian sturgeon Acipenser persicus. Aquaculture International, 18; 837–841.
24.Nordgarden, U., Fjelldal, P.G., Hansen, T., Björnsson, B.T., Wargelius, A. (2006). Growth hormone and insulin-like growth factor-I act together and independently when regulating growth in vertebral and muscle tissue of Atlantic salmon postsmolts. Genearal and Comparative Endocrinology, (149); 253–260.
25.Radonic, A., Thuike, S., Mackay, I.M., Landt, O., Siegert, W. Nitsche, A. (2004). Guideline to reference gen selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications, (313);856- 862.
26.Reinecke, M., Schmid, A., Ermatinger, R., Loffing-Cueni, D. (1997). Insulin-like growth factor I in the teleost Oreochromis mossambicus, the tilapia: Gene sequence, tissues expression, and cellular localization. Endocrinology, (138); 3613-3619.
27.Riley, L.G., Hirano, T., Grau, E.G. (2002). Rat ghrelin stimulates growth hormone and prolactin release in the tilapia, Oreochromis mossambicus. – Zool. Sci. (19); 797-800.
28.Sajedi, R.H., Aminzadeh, S., Naderi, H., Abdolahi, H. (2003). Genetic variation within and among rainbow trout, Oncorhynchus mykiss, hatchery populations from Iran assessed by PCR-RFLP analysis of mitochondrial DNA segments. Food Science, (68); 870-873.
29.Shamblott, M.J., Chen, T.T. (1992). Identification second insulin-like growth factor in a fish species. Proceeding of Natural Academic Science. USA, (89);8913-8917.
30.Vong, Q. P., Chan, K. M., Cheng, C. H. K. (2003). Quantification of common carp (Cyprinus carpio) IGF-I and IGF-II mRNA by real-time PCR: differential regulation of expression by GH. Journal of Endocrinology, (178): 513–521.
31.Wenne, R., Boudry, P., Hemmer-Hansen, J., Kause.A. (2007). What role for genomics in fisheries management and aquaculture, Aquat. Living Resour, 20(3); 241–255.
32.Wood W. A., Duan, C., Bern, H. A. (2005). Insulin-like growth factor signaling in fish. International review of cytology, 243; 215-285.
33.Wuertz, S., Gessner, J., Kirschbaum, F., Kloas, W. (2007). Expression of IGF-I and IGF-I receptor in male and female sterlet, Acipenser ruthenus; Evidence for an important role in gonad maturation. Comparative biochemistry and physiology, (147); 223-230.
34.Yakar, S., Pennisi, P., Kim, C.H., Zhao, H., Toyoshima, Y., Gavrilova, O. (2005). Studies involving the GH-IGF axis: lessons from IGF-I and IGF-I receptor gene targeting mouse models. Journal of Endocrinological Investigation, 28 (5); 19-22.
35.Yarmohammadi, M., Shabani, A., Pourkazemi, M., Soltanloo, H., Imanpour, M,R., Ramezanpour, S. (2012). Effects of starvation and re-feeding on compensatory growth performance, plasma metabolites and IGF-I gene expression of Persian sturgeon (Acipenser persicus, Borodin 1897). Iranian journal of fisheries Sciences, 12(2); 465-483..
_||_