Assessment of Caspian Sea as water source for using in forest nursery at north of Iran
Subject Areas :
forest
mehrdad zarafshar
1
*
,
ali sattarian
2
,
bahram naseri
3
,
bentolhoda esfandiari
4
,
peyman ashkavand
5
1 - دانشآموخته دکتری، گروه جنگلداری، دانشکده منابع طبیعی نور، دانشگاه تربیت مدرس.
2 - دانشیار گروه جنگلداری، دانشکده منابع طبیعی و علوم کشاورزی، دانشگاه گنبد کاووس، گنبد کاووس، استان گلستان.
3 - دانشجوی دکتری، گروه جنگلداری، دانشکده منابع طبیعی نور، دانشگاه تربیت مدرس.
4 - دانش آموخته مقطع کارشناسی، دانشگاه علامه محدث نوری
5 - دانشآموخته کارشناسی ارشد، گروه جنگلداری، دانشکده منابع طبیعی نور، دانشگاه تربیت مدرس.
Received: 2015-05-03
Accepted : 2015-09-09
Published : 2015-12-21
Keywords:
biomass,
brackish water,
irrigatation,
forest species,
Dehydration,
Abstract :
The most of forest and fruit trees are not resistant to brackish water of Caspian Sea. In the current research, seedlings of some forest species such as Celtis australis, Fraxinus excelsior, Olea europaea, Quercus macranthera, Eucalyptus camaldulensis, Pyrus boisseriana and Pinus nigra were irrigated by Caspian Sea water for 2 months in the middle of summer for surveying of the water source in forest nursery. Biomass allocation was our criteria. The result showed that plant biomass of C. australis is decreased around 12% when was subjected by this water source while we could not find any considerable and significantly changing for others. We found out that forest nursery manager can irrigate the forest seedlings at least in case of the current species by water of Caspian Sea at dry seasons.
References:
Akhani, H., & M., Ghorbanli. 1993. A contribution to the halophytic vegetable and flora of Iran. P 35-44, In: H. leith and A.A. Al Massom (eds), Towards the rational use of high salinity tolerant plants, Kluwer Academic Publishers Dordrecht
Allen, J. A., J. L Chambers & M. Stine. 1994. Prospects for increasing the salt tolerance of forest trees: a review. Tree Physiology, 14(7-8-9): 843-853.
Arji, I., & A., Kazem. 2003. Evaluation of growth responses and proline accumulation of three Iranian native olive cultivars under drought stress. J. Agric. Sci. Natur. Resour. Vo2. 10(2): 87-100.
Feizi, M., 2003. Water Use Efficency of Wheat, Barley, Cotton and Sunflower with Respect to Water Quality. Journal of Soil and Water Sciences, 17:97-106.
Rezaie, S.A.A., and Mosavi, S.A.R., 2005. An investigation on stablishment Of resistancte trees in semi-arid site, Grabsar (Mazandaran province). Pajouhesh & Sazandagi. No 66: 89-95.
Zarei, M.A., 2006. The pattern Distribution of salinity in soil under tree irrigation regimes in the basin irrigation, Irrigation and Drainage MSc Thesis, University of Shahrekord.
Ben Ahmed, Ch., Magdich, S., Ben Rouina, B., Boukhriss, M., & Ben Abdullah, F. 2012. Saline water irrigation effects on soil salinity distribution and some physiological responses of field grown Chemlali olive, Journal of Environmental Management 113: 538-544.
Cheeseman, T. 1998. Polyglot politics: hip hop in Germany. Debatte: Review of Contemporary German Affairs, 6:191 – 214 [May].
Chinnusamy, V., Jagendorf, A., and Zhu, J.-K. 2005. Understanding and improving salt tolerance in plants. Crop Sci. 45: 437–448.
Cramer, G.R., & R.S. Nowak. 1992. Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt stressed barley. Physiol. Plant, 84: 600-605.
Ebert, G., F. Casierra, & P. Ludders. 2000. Influence of NaCl salinity on growth and mineral uptake of lulo (Solanum quitoense L.), J. Appl. Bot. 73: 31-33.
Flowers, T. J. 2004. Improving crop salt tolerance. Journal of Experimental botany, 55(396): 307-319.
Greenway, H., & Munns, R. 1980. Mechanisms of salt tolerance in nonhalophytes. Annual review of plant physiology, 31(1): 149-190.
Hafsi, C., Lakhdar, A., Rabhi, M., Debez, A., Abdelly, C., & Ouerghi, Z. 2007. Interactive effects of salinity and potassium availability on growth, water status, and ionic composition of Hordeum maritimum. J. Plant Nutr. Soil Sci. 170: 469-473.
Ibrahim, A. H. 2013. Tolerance and avoidance responses to salinity and water stresses in Calotropis procera and Suaeda aegyptiaca. Turkish Journal of Agriculture and Forestry, 37(3): 352-360.
Marschner, H., Mineral Nutrition of Higher Plants, second ed. Academic Press, London, 1995.
Meloni, D. A., M.R. Gulotta, C.A. Martinez, & M.A. Oliva. 2004. Salinity tolerance in algarrobo seedlings (Prosopis alba G.): growth, osmotic adjustment and nitrate reduction, Braz. J. Plant Physiol, 15: 39-46.
Munns, R. 2002. Comparative physiology of salt and water stress. plant cell Environ. 25:659-671
Munns, R., & M, Tester. 2008. Mechanisms of salinity tolerance, Annu. Rev. Plant Biol. 59: 651-681.
Paranychianakis N.V., & K.S. Chartzoulakis, 2005. Irrigation of Mediterranean crops with saline water: from physiology to management practices, Agric. Ecosyst. Environ. 106: 171-187.
Parida, A. K., & Das, A. B. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and environmental safety, 60(3): 324-349.
Steppuhn, H., M. T. Van Genuchten, C.M. Grieve., 2005. Root-zone salinity: I. Selecting a product-yield index and response function for crop tolerance, Crop Sci. 45: 209-220.
Strange, K., 2004. Cellular volume homeostasis, Adv. Physiol. Educ. 28: 155-159.
Taiz, L., & E. Zeiger, 2006. Plant Physiology, third ed. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts.