Effects of nanoclay particles contained-acrylic resin and plant mulch on morphological characteristics of pistachio (Pistaciavera L.) in Gorpan rangeland, Esfarāyen
Subject Areas :
RANGLAND MANAGMENT
paria kamali
1
,
gholamali heshmati
2
,
Adel sepehri
3
,
shervin ahmadi
4
1 - Gorgan University of Agricultural Sciences & Natural Resources
2 - استاد دانشگاه علوم کشاورزی و منابع طبیعی گرگان
3 - استاد دانشگاه علوم کشاورزی و منابع طبیعی گرگان
4 - استادیار پژوهشکده شیمی و پلیمر ایران
Received: 2017-05-12
Accepted : 2017-08-30
Published : 2017-08-23
Keywords:
clay nanoparticles,
Pistaciavera,
acrylic resin,
plant mulch,
Abstract :
Water scarcity issue and itscomplexity is found to be one of the problems in Iran. On the other hand, farming fruits species in the form of a rangeland project for resident nomads can be one of the solutions to livelihood of this group of stakeholders as well as to reduce the number of livestock in the natural resource and rangelands. The present research shed lights on effect of mixing acrylic resin and nanoclay particle as a mulch on moisture absorption and retention as well as its impact on establishment of pistachio.Treatments include controls, plant mulch (rain-fed wheat straw) and polymer nano-composite 0%, 1% and 3% nanoclay - acrylic resin with 10 replicates for each treatment. Pistachio morphological traits (plant height, canopy area and number of leaves) were measured after one year after planting.Data analysis was performed using ANOVA and Duncan. The results showed no significant difference between treatments straw to control (at probability level of 5%) but other treatments (at probability level of 1%) had significant difference with control.All treatments treatment had significant difference to 3% nano-clay particles of acrylic resin so that the plant height, canopy area and number of leaves in treatment 3% nano-clay, acrylic resins were higher than other treatments.
References:
Abd El-Kader, A., S. Shaaban,& M.S. Abd El-Fattah, 2010. Effect of irrigation levels and organic compost on okra plants (Abelmoschus esculentus l.) grown in sandy calcareous soil. Agriculture and Biology Journal of North America 1(3):225-231
Agaba, H. L., G. Baguma, G.F.O. Esegu, J. Obua, G.D. Kabasa,& A. Hüttermann. 2010. Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions CLEAN – soil. Air. Water 38(4):328-335.
Arora, S., P. Sharma, S. Kumar, R. Nayan, P.K. Khanna,& M.G.H. Zaidi, 2012. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regular 66:303–310.
Brunner, G. 2014. Reactions of synthetic polymers with water. Supercritical Fluid Science and Technology 5:511-523.
Cossins, D., 2014. Next generation: nanoparticles augment plant functions. The incorporation of synthetic nanoparticles into plants can enhance photosynthesis and transform leaves into biochemicalsensors., The scientist, news & opinion, March 16. http://www.the-scientist.com/?articles.view/articleNo/39440/title/Next-Generation–Nanoparticles-Augment-Plant-Functions.
DeRosa, M.C., C. Monreal, M. Schnitzer, R. Walsh,& Y. Sultan, 2010. Nanotechnology in fertilizers. Nat Nanotechnology 5:91-99.
Galbraith, D.W., 2007. Nano biotechnology: silica breaks through in plants. Nat Nanotechnology 2:272-273.
Giraldo, J.P., M.P. Landry, S.M. Faltermeier, T.P. McNicholas, N.M. Iverson, A.A. Boghossian, N.F. Reuel, A.J. Hilmer, F. Sen, J.A. Brew,& M.S. Strano, 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 2012-2035,
Gopinath, K., S. Gowri, V. Karthika,& A. Arumugam, 2014. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. Journal of Nanostructure Chemistry 4:1-11.
Gruyer, N., M. Dorais, C. Bastien, N. Dassylva,& G. Triffault-Bouchet, 2013.Interaction between sliver nanoparticles and plant growth. In: International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant factory– greensys", Jeju, Korea, pp. 6–11,
Jaberzadeh, A., P. Moaveni, H.R.T. Moghadam,& H. Zahedi, 2013. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not botanical horti agrobotanici.41: 201–207.
Khadem, K., M. Jangjou,& M. Mesdaghi, 1998. The best location of the plants and the most suitable criteria ChalhHay size or squeeze in the Kavir Mohammadabad Qayan arches" Proceedings of the Third International Conference against desertification and sustainable development TalabHay deserts in Iran, Arak, 98-104.
Khalilpour, A.,H. Tabatabaei, R. Sharifian, B. Roshan, S.D. Alikhani,& M. Fatahi, 2005. Super absorbent effect on increasing water use efficiency in pine seedlings, Proceedings of the Second National Conference of watershed management and soil and water resources management, martyr. Bahonar University of Kerman 1617-1609 .
Khodakovskaya,M.,E. Dervishi, M. Meena , Y. Xu , L. Zhongrui , W. Fumiya,&A.S. Biris, 2009. Carbon Nanotubes Are Able To Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth. ACS Nano 3(10):3221-3227.
Khodakovskaya, M.V., K. de Silva, A.S. Biris, E. Dervishi,& H. Villagarcia, 2012. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128-2135.
Kumar, V., P. Guleria, V, Kumar,& S.K. Yadav, 2013. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468,
Lahiani, M.H., E. Dervishi, J. Chen, Z. Nima, A. Gaume, A.S. Biris,& M.V. Khodakovskaya, 2013. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Apply Mater Interfaces 5:7965-7973.
Liu, Sh. Wu, M. Ven, A. Molenaar,& J. Besamusca, 2010. Characterization of organic surfactant on Mont morillonite nanoclay to be used in Bitumen. Journal of Materials in Civil Engineering22(8):794-799.
Ma, C., S. Chhikara, B. Xing, C. Musante, J.C. White,& O.P. Dhankher, 2013. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustainable Chemistry Enginaring 1(7):768-778.
Mack, M.C. C. M.Mack,& D. Antonio, 1998. Impacts of biological invasions on disturbance regimes, Trends in Ecology and Evolution 13:195-198,.
Mahmoodzadeh, H., M. Nabavi,& H. Kashefi, 2013. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). Journal of ornamental hortic plants 3:25-32.
Mishra, V., R.K. Mishra, A. Dikshit,& A.C. Pandey, 2014. Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Biological Techniques 1:159-180.
Nair, R., S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida,& D.S. Kumar, 2010. Nanoparticulate material delivery to plants. Plant Science 179:154–163.
Norton, J.B., T.A. Monaco, J.M. Norton, D.A. Johnson,& T.A. Jones. 2004. Cheatgrass invasion alters soil morphology and organic mater dynamics in big sagebrush–steppe. Rangelands 1:57–63.
Puoci, F.,F. Iemma, U.G. Spizzirri,& G. Cirillo, 2008. Polymer in Agriculture. American Journal of Agriculture and Biological Science 3(1):299-314.
Ranger, J., M. Colin-Belyrand,& C. Nys, 1995. Le cycle biogeochemical des elements majeure dens les ecosystems foresters. Etude Gestation Sds 2(2):119-134.
Safari-ned, M., F. Javid, M. Zad-Behtuyi,& Z. Marjani, 2013. Study of rice varieties yield and yield components response to iron nano composite apply in different growth stages. Journal of farming and Allied Sciences 2(8):638-642.
Salama, H.M.H., 2012. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International research journal biotech 3(10): 190-197.
Satish Vitthalrao, B.K., C.D. Salunke,& R.B. Patil, 2011. Studies on amendment of different biopolymers in sandy loam and their effect on germination seedling growth of Gossypium herbaceum L. Applied biochemist biotechnol 163:780-791.
Scrinis, G.,& K. Lyons, 2007. The emerging nano-corporate paradigm: nanotechnology and thetransformation of nature, food and agri-food systems. International Journal of Societal Food Agriculture 15:22–44.
Sen, J.P., Prakash,& N. De, 2015. Nano- clay composite and phto-nanotechnologic : a new horizon to food security issue in Indian agriculture. Journal of Global Biosciences 4(5):2187-2198.
Shahid, S.A., A.Q. Ansar, A. Farooq, U. Inam, & R. Umer 2012. Effects of a Novel Poly (AA-co-AAm) /AlZnFe2O4/potassium Humate Superabsorbent Hydrogel Nanocomposite on Water Retention of Sandy Loam Soil. Wheat Seedling Growth Molecules 17(11):12587-12602.
Sharma, P., D. Bhatt, M.G. Zaidi, P.P. Saradhi, P.K. Khanna,& S. Arora, 2012. Silver nanoparticlemediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemical Biotechnology 167:2225-2233.
Siddiqui, M.H., M.H. Al-Whaibi & F. Mohammad, 2015. Nanotechnology and plant sciences. Nanoparticles and their impact on plants 978 p.
Siddiqui, M.H., &M.H. Al-Whaibi, 2014. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill. Saudi Biology Sciences 21:13–17.
Simmons, A.M., C.K. Kousik,& A. Levi, 2004. Combining reflective mulch and host plant resistance for sweet potato whitefly (Hemiptera: Aleyrodidae) management in watermelon. Crop protection 29:898-902.
Standnes, D.C.,& I. Skjevrak, 2014. Literature review of implemented polymer field projects. Journal Of Petroleum Science and Engineering 122:761-775.
Suriyaprabha, R., G. Karunakaran, R. Yuvakkumar, V. Rajendran,& N. Kannan, 2012. Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Curry Nanosciences 8:902-908.
Syu, Y.Y., J.H. Hung, J.C. Chen,& H.W. Chuang, 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology Biochemistry 83: 57-64.
Torney, F,.B.G. Trewyn, V.S.Y. Lin.,& K. Wang, 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnology 2:295-300.
Wang, A., Y. Zheng & F. Peng, 2014. Thickness-controllable silica coating of CdTe QDs by reverse Microemulsion method for the application in the growth of rice. Journal of Spectroscopy., 5:409-435.
Yang, F., F. Hong, W. You, C. Liu, F. Gao, C. Wu,& P. Yang, 2006. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research 110(2):179–190.
Zhu, W., X. Zhang, D. Wang,& W. Lu, 2013. Experimental study on the conduction function of nano-hydroxyapati artificial bone. IET Micro & Nano Letters5(11):19-27.
_||_
Abd El-Kader, A., S. Shaaban,& M.S. Abd El-Fattah, 2010. Effect of irrigation levels and organic compost on okra plants (Abelmoschus esculentus l.) grown in sandy calcareous soil. Agriculture and Biology Journal of North America 1(3):225-231
Agaba, H. L., G. Baguma, G.F.O. Esegu, J. Obua, G.D. Kabasa,& A. Hüttermann. 2010. Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions CLEAN – soil. Air. Water 38(4):328-335.
Arora, S., P. Sharma, S. Kumar, R. Nayan, P.K. Khanna,& M.G.H. Zaidi, 2012. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regular 66:303–310.
Brunner, G. 2014. Reactions of synthetic polymers with water. Supercritical Fluid Science and Technology 5:511-523.
Cossins, D., 2014. Next generation: nanoparticles augment plant functions. The incorporation of synthetic nanoparticles into plants can enhance photosynthesis and transform leaves into biochemicalsensors., The scientist, news & opinion, March 16. http://www.the-scientist.com/?articles.view/articleNo/39440/title/Next-Generation–Nanoparticles-Augment-Plant-Functions.
DeRosa, M.C., C. Monreal, M. Schnitzer, R. Walsh,& Y. Sultan, 2010. Nanotechnology in fertilizers. Nat Nanotechnology 5:91-99.
Galbraith, D.W., 2007. Nano biotechnology: silica breaks through in plants. Nat Nanotechnology 2:272-273.
Giraldo, J.P., M.P. Landry, S.M. Faltermeier, T.P. McNicholas, N.M. Iverson, A.A. Boghossian, N.F. Reuel, A.J. Hilmer, F. Sen, J.A. Brew,& M.S. Strano, 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 2012-2035,
Gopinath, K., S. Gowri, V. Karthika,& A. Arumugam, 2014. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. Journal of Nanostructure Chemistry 4:1-11.
Gruyer, N., M. Dorais, C. Bastien, N. Dassylva,& G. Triffault-Bouchet, 2013.Interaction between sliver nanoparticles and plant growth. In: International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant factory– greensys", Jeju, Korea, pp. 6–11,
Jaberzadeh, A., P. Moaveni, H.R.T. Moghadam,& H. Zahedi, 2013. Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not botanical horti agrobotanici.41: 201–207.
Khadem, K., M. Jangjou,& M. Mesdaghi, 1998. The best location of the plants and the most suitable criteria ChalhHay size or squeeze in the Kavir Mohammadabad Qayan arches" Proceedings of the Third International Conference against desertification and sustainable development TalabHay deserts in Iran, Arak, 98-104.
Khalilpour, A.,H. Tabatabaei, R. Sharifian, B. Roshan, S.D. Alikhani,& M. Fatahi, 2005. Super absorbent effect on increasing water use efficiency in pine seedlings, Proceedings of the Second National Conference of watershed management and soil and water resources management, martyr. Bahonar University of Kerman 1617-1609 .
Khodakovskaya,M.,E. Dervishi, M. Meena , Y. Xu , L. Zhongrui , W. Fumiya,&A.S. Biris, 2009. Carbon Nanotubes Are Able To Penetrate Plant Seed Coat and Dramatically Affect Seed Germination and Plant Growth. ACS Nano 3(10):3221-3227.
Khodakovskaya, M.V., K. de Silva, A.S. Biris, E. Dervishi,& H. Villagarcia, 2012. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6(3):2128-2135.
Kumar, V., P. Guleria, V, Kumar,& S.K. Yadav, 2013. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468,
Lahiani, M.H., E. Dervishi, J. Chen, Z. Nima, A. Gaume, A.S. Biris,& M.V. Khodakovskaya, 2013. Impact of carbon nanotube exposure to seeds of valuable crops. ACS Apply Mater Interfaces 5:7965-7973.
Liu, Sh. Wu, M. Ven, A. Molenaar,& J. Besamusca, 2010. Characterization of organic surfactant on Mont morillonite nanoclay to be used in Bitumen. Journal of Materials in Civil Engineering22(8):794-799.
Ma, C., S. Chhikara, B. Xing, C. Musante, J.C. White,& O.P. Dhankher, 2013. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustainable Chemistry Enginaring 1(7):768-778.
Mack, M.C. C. M.Mack,& D. Antonio, 1998. Impacts of biological invasions on disturbance regimes, Trends in Ecology and Evolution 13:195-198,.
Mahmoodzadeh, H., M. Nabavi,& H. Kashefi, 2013. Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). Journal of ornamental hortic plants 3:25-32.
Mishra, V., R.K. Mishra, A. Dikshit,& A.C. Pandey, 2014. Interactions of nanoparticles with plants: an emerging prospective in the agriculture industry. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Biological Techniques 1:159-180.
Nair, R., S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida,& D.S. Kumar, 2010. Nanoparticulate material delivery to plants. Plant Science 179:154–163.
Norton, J.B., T.A. Monaco, J.M. Norton, D.A. Johnson,& T.A. Jones. 2004. Cheatgrass invasion alters soil morphology and organic mater dynamics in big sagebrush–steppe. Rangelands 1:57–63.
Puoci, F.,F. Iemma, U.G. Spizzirri,& G. Cirillo, 2008. Polymer in Agriculture. American Journal of Agriculture and Biological Science 3(1):299-314.
Ranger, J., M. Colin-Belyrand,& C. Nys, 1995. Le cycle biogeochemical des elements majeure dens les ecosystems foresters. Etude Gestation Sds 2(2):119-134.
Safari-ned, M., F. Javid, M. Zad-Behtuyi,& Z. Marjani, 2013. Study of rice varieties yield and yield components response to iron nano composite apply in different growth stages. Journal of farming and Allied Sciences 2(8):638-642.
Salama, H.M.H., 2012. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International research journal biotech 3(10): 190-197.
Satish Vitthalrao, B.K., C.D. Salunke,& R.B. Patil, 2011. Studies on amendment of different biopolymers in sandy loam and their effect on germination seedling growth of Gossypium herbaceum L. Applied biochemist biotechnol 163:780-791.
Scrinis, G.,& K. Lyons, 2007. The emerging nano-corporate paradigm: nanotechnology and thetransformation of nature, food and agri-food systems. International Journal of Societal Food Agriculture 15:22–44.
Sen, J.P., Prakash,& N. De, 2015. Nano- clay composite and phto-nanotechnologic : a new horizon to food security issue in Indian agriculture. Journal of Global Biosciences 4(5):2187-2198.
Shahid, S.A., A.Q. Ansar, A. Farooq, U. Inam, & R. Umer 2012. Effects of a Novel Poly (AA-co-AAm) /AlZnFe2O4/potassium Humate Superabsorbent Hydrogel Nanocomposite on Water Retention of Sandy Loam Soil. Wheat Seedling Growth Molecules 17(11):12587-12602.
Sharma, P., D. Bhatt, M.G. Zaidi, P.P. Saradhi, P.K. Khanna,& S. Arora, 2012. Silver nanoparticlemediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemical Biotechnology 167:2225-2233.
Siddiqui, M.H., M.H. Al-Whaibi & F. Mohammad, 2015. Nanotechnology and plant sciences. Nanoparticles and their impact on plants 978 p.
Siddiqui, M.H., &M.H. Al-Whaibi, 2014. Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds mill. Saudi Biology Sciences 21:13–17.
Simmons, A.M., C.K. Kousik,& A. Levi, 2004. Combining reflective mulch and host plant resistance for sweet potato whitefly (Hemiptera: Aleyrodidae) management in watermelon. Crop protection 29:898-902.
Standnes, D.C.,& I. Skjevrak, 2014. Literature review of implemented polymer field projects. Journal Of Petroleum Science and Engineering 122:761-775.
Suriyaprabha, R., G. Karunakaran, R. Yuvakkumar, V. Rajendran,& N. Kannan, 2012. Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Curry Nanosciences 8:902-908.
Syu, Y.Y., J.H. Hung, J.C. Chen,& H.W. Chuang, 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiology Biochemistry 83: 57-64.
Torney, F,.B.G. Trewyn, V.S.Y. Lin.,& K. Wang, 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnology 2:295-300.
Wang, A., Y. Zheng & F. Peng, 2014. Thickness-controllable silica coating of CdTe QDs by reverse Microemulsion method for the application in the growth of rice. Journal of Spectroscopy., 5:409-435.
Yang, F., F. Hong, W. You, C. Liu, F. Gao, C. Wu,& P. Yang, 2006. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research 110(2):179–190.
Zhu, W., X. Zhang, D. Wang,& W. Lu, 2013. Experimental study on the conduction function of nano-hydroxyapati artificial bone. IET Micro & Nano Letters5(11):19-27.