Evaluation of qnrA, qnrB, and qnrS genes in fluoroquinolone resistant Klebsiella pneumoniae isolates isolated from clinical cases
Subject Areas : microbiologyHossein Khodabandeh shahraki 1 *
1 -
Keywords: Fluoroquinolones, Klebsiella pneumoniae, Antibiotic resistance,
Abstract :
Klebsiella genus is one of the most important opportunistic intestinal bacteria and in addition to causing pulmonary infections, it also causes infections in other parts of the body and causes nosocomial infections. Klebsiella pneumoniae has become resistant to a number of antibiotics, including extended-spectrum cephalosporins, due to the acquisition of plasmids that encode the production of extended-spectrum beta-lactamases. The aim of this study is to determine the frequency of qnrA, qnrB, and qnrS genes in fluoroquinolone-resistant Klebsiella pneumoniae isolates isolated from hospital infections in Shahrekord city. The present study was conducted on 56 Klebsiella pneumoniae isolates isolated from clinical cases in Shahrekord city. After confirming the diagnosis of the isolated bacteria by biochemical methods, they were also confirmed by molecular methods. The antibiotic resistance of the studied bacteria to the antibiotics nalidixic acid, ciprofloxacin and norfloxacin was investigated. Then, in the presence of specific primers, the frequency of the qnrA, qnrB, qnrS genes was investigated. In this study, resistance to nalidixic acid was 46%, resistance to ciprofloxacin was 28% and resistance to norfloxacin was 34%. Also, the frequency of the qnrA gene was 15.38%, the qnrB gene was 19.23% and the qnrS gene was 26.92%. The emergence of antibiotic resistance is an issue that must be taken seriously and therefore continuous evaluation of bacteriology and the correct line of treatment and appropriate use of antibiogram discs in the laboratory should be carried out.
1. Green VL, Verma A, Owens RJ, Phillips SE, Carr SB. Structure of New Delhi metallo-β-lactamase 1 (NDM-1). 2011; 67 (10):1160-1164.
2. García-Sureda L, Juan C, Doménech- Sánchez A, Albertí S. Role of Klebsiella pneumoniae LamB porin in antimicrobial resistance. Antimicrob Agents Chemother. 2011; 55(4):1803-1805.
3. Luo Y, Yang J, Zhang Y, Ye L, Wang L, Guo L. Prevalence of β-lactamases and 16S rRNA Methylase genes amongst clinical Klebsiella pneumoniae isolates carrying plasmid-mediated quinolone resistance determinants. Int J Antimicrob Agents.2011; 37(4): 352-5.
4. Green VL, Verma A, Owens RJ, Phillips SE, Carr SB. Structure of New Delhi metallo-β-lactamase 1 (NDM-1). Acta Crystallogr Sec. 2011; 67(10):1160-1164.
5. Lye DC, Kwa AL, Chlebicki P. Antimicrobial resistance and practical solutions. Ann Acad Med Singapore. 2011; 40(4):156-162.
6. Mustafa OA, Yusuf D. Investigation of some antibiotic susceptibility plasmid profiles and ESBL characteristic of Klebsiella pneumoniae isolated from urinary system infection. World applied Sci J. 2009; 6(5):630-636.
7. Nordmann P. Emergence of plasmid mediated resistance to quinolones in Enterobacteriaceae. Pathol Biol (Paris). 2006; 54 (1):7-9
8. Poirel L, Cattoir V, Nordmann P. Is plasmid-mediated quinolone resistance a clinically significant problem? Clin Microbiol Infect. 2008; 14(4):295–7.
9. Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006; 6(10):629–40
10. Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother. 2005; 56(3):463–
11. Karisik E, Ellington MJ, Pike R, Warren RE, Livermore DM, Woodford N. Molecular characterization of plasmids encoding CTX-M-15 beta-lactamases from Escherichia coli strains in the United Kingdom. J Antimicrob Chemother. 2006; 58(3):665–8.
12. Poirel L, Schrenzel J, Cherkaoui A, Bernabeu S, Renzi G, Nordmann P. Molecular analysis of NDM-1-producing enterobacterial isolates from Geneva, Switzerland. J Antimicrob Chemother. 66 (4): 2011; 1730–1733
13. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2005; 60 (5): 394–397.
14. Ferreira S, Toleman M, Ramalheira E, Da Silva GJ, Walsh T, Mendo S. First description of Klebsiella pneumoniae clinical isolates carrying both qnrA and qnrB genes in Portugal. Int J Antimicrob Agents. 2010; 35(6):584-586.
15. Garnier F, Raked N, Gassama A, Denis F, Ploy MC. Genetic environment of quinolone resistance gene qnrB2 in a complex sul1-type integron in the newly described Salmonella enterica serovar Keurmassar. Antimicrob Agents Chemother. 2006; 50(9):3200-3227/
16.اميرمظفری ن، فروهش تهراني ه، طواف لنگرودی ز. عبدالهي، ع. (1386). بررسي مقاومت دارويي ناشي از بتالاكتاماز وسيع الطيف(ESBL) در كلبسيلا پنومونيه با مقاومت دارويي چندگانه در بيماران بستری. مجله پژوهشي دانشکده پزشکي، دوره31، شماره 3، صفحات241 تا 245.
17. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk susceptibility testing; 20th informational supplement. Clinical and Laboratory Standards Institute, Wayne, Pa, 2010.
18. Turton JF, Perry C, Elgohari S, Hampton CV. PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. J Med Microbiol. 2010; 59 (4): 541-547
19. رنجبران م، ذوالفقاری م، ژاپوني نژاد ع، آموزنده نوباوره، ع، ابطحي، ح، طبيبي نژاد م. بررسي مولکولي اينتگرون¬ها در اشریشيا كلي وكلبسيلا پنومونيه ¬های جدا شده از عفونت¬های دستگاه ادراری. مجله ی دانشگاه علوم پزشکي مازندران. 1392؛ 23(105): 20-27.
20. Bashir S, Haque A, Sarwar Y, Anwar A, Anwar M. Virulence profile of different phylogenetic groups of locally isolated community acquired uropathogenic E.coli from Faisalabad region of Pakistan. Ann Clin Microbiol Antimicrob. 2012; 11(23) 1-6.
21.عبدی ح ع، راشکي ا، راشکي قلعه نو ز، شاه كرمي ف، شهرکی ز. (1392). بررسی رابطه فيلوژني با توزیع ژن¬های كد كننده ی فاكتورهای بیماری¬زا در ایزوله¬های اشريشيا كلي جدا شده از دستگاه تناسلي زنان مراجعه كننده به كلينيک زنان شهرستان زابل به روشMultiplex-PCR . مجله ی ميکروب شناسي پزشکي ايران. 1392؛ 26(4): 45-53.
22. Gholipour A, Soleimani N, Shokri D, Mobasherizadeh S, Kardi M, Baradaran A. Phenotypic and Molecular Characterization of Extended-Spectrum beta-Lactamase Produced by Escherichia coli, and Klebsiella pneumoniae Isolates in an Educational Hospital. Jundishapur J Microbiol. 2014; 7(10): e11758.
23. Dallal MS, Sabbaghi A, Aghamirzaeie HM, Lari AR, Eshraghian MR, Mehrabad JF, et al. Prevalence of AmpC and SHV β-lactamases in clinical isolates of Escherichia coli from Tehran Hospitals. Jundishapur J Microbiol. 2013; 6 (2): 176-80.
24.محمدی مهر م، فيض آبادی م م، بهادری ع، متشکرآراني م، خسروی م. بررسي فراواني و تعيين مقاومت آنتي بيوتيکي باكتری-های گرم منفي مسئول عفونت بيمارستاني بخش مراقبت ويژه بيمارستان بعثت تهران. مجله ی ميکروب شناسي پزشکي ایران. (1388). 3 (3-2). 54-47.
25. Soleimani-Asl Y, Zibaei M, Firoozeh F. Detection of qnrA gene among quinolone-resistant Escherichia coli isolated from urinary tract infections in Khorram Abad during; Feyz. 2012; 17(5): 488-495
26. Muhammad I, Uzma M, Yasmin B, Mehmood Q, Habib B. Prevalence of antimicrobial resistance and integrons in Escherichia coli from Punjab, Pakistan. Braz J Microbiol. 2011; 42(3): 462-466.
27. Karlowsky JA, Hoban DJ, Decorby MR, Laing M L, Zhanel GG. Flouroquinolone resistant urinary isolates of Escherichia coli from outpatient are frequently multidrug resistant: result from the North American urinary tract infection collaborative alliance-quinolone resistance study. Antimicrob Agents Chemother. 2006; 50(6): 2251-2254.
28. Oktem IM, Gulay Z, Bicmen M, Gur D. QnrA prevalence in extended-spectrum β-lactamase positive Entrobacteriaceace isolates from Turkey. Jpn J Infect Dis. 2008; 61(5): 13-17.
29. Pereira AS, Andrare SS, Montero J, Sader HS, Pignatary ACC, Gales AC. Evaluation of the susceptibility profiles, genetic similarity and present of qnr genes in Escherichia coli resistant to ciprofloxacin isolated in Brazilian hospitals. Braz J Infect Dis. 2007; 11(1): 40-43.