Silver Photodecoration on Nanostructured Titanium Niobate as an Active Anode Material for Li-Ion Batteries
Subject Areas :hossein kia 1 , pouya pirali 2 * , hamid reza Baharvandi 3
1 - Phd of mechanical engineering student, Faculty of Materials and Manufacturing Technology, Malek ashtar university of technology, Tehran, Iran.
2 - Faculty of Materials and Manufacturing Technology, Malek ashtar university of technology
3 - Faculty of Materials and Manufacturing Technology, Malek ashtar university of technology
Keywords: Sol-Gel Mixed Oxide Silver Li-Ion Battery Intercalation Anode.,
Abstract :
Due to its high compressive strength, reasonable price and easy access, silicon carbide is one of the most widely used ceramics, especially in the manufacture of armor. However, high brittleness is one of the most important problems of these ceramics, which can be controlled by adding additives or modifying and improving the manufacturing process. In this paper, the method of manufacturing and processing silicon carbide ceramics has been investigated with the aim of improving properties through lines such as press pressure, humidity and grinding time. The work steps include; determining the experiment strategy, manufacturing the sample and determining the physical and mechanical properties and the best condition according to the response variables including raw density, bending and compressive strength. Finally, after manufacturing samples with different amounts of press pressure from 30 to 120 bar, grinding time from 1 to 3 hours and moisture percentage from 4 to 13% and determining their density, bending and compressive strength, the improved values of mechanical properties and The density was obtained at 7% humidity, 1 hour milling time, and 120 times press pressure. After these steps and using the determined working conditions, the main sample is finished and baked at 2000 degrees Celsius. By determining the mechanical properties including hardness, Young's modulus, fracture toughness and also the density of the final sample after baking, it is determined that the sample made with the working conditions of humidity, pressing pressure and grinding time is the most consistent with the nominal properties of the silicon carbide.
[1] Y. He, K. Xiang, W. Zhou, Y. Zhu, X. Chen & H. Chen, "Folded-hand silicon/carbon three-dimensional networks as a binder-free advanced anode for high-performance lithium-ion batteries", Chemical Engineering Journal, vol. 353, pp. 666-678, 2018.
[2] K. Jeong, J. M. Kim, S. Kim & G. Y. Jung, "Carbon‐Nanotube‐Cored Cobalt Porphyrin as a 1D Nanohybrid Strategy for High‐Performance Lithium‐Ion Battery Anodes", Advanced Functional Materials, vol. 29, no. 24, p. 1806937, 2019.
[3] J. R. Miller, "Valuing reversible energy storage", Science, vol. 335, no. 6074, pp. 1312-1313, 2012.
[4] M. Li, J. Lu, Z. Chen & K. Amine, "30 years of lithium‐ion batteries", Advanced Materials, vol. 30, no. 33, p. 1800561, 2018.
[5] Y. G. Guo, J. S. Hu & L. J. Wan, "Nanostructured materials for electrochemical energy conversion and storage devices", Advanced Materials, vol. 20, no. 15, pp. 2878-2887, 2008.
[6] L. Ji, Z. Lin, M. Alcoutlabi & X. Zhang, "Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries", Energy & Environmental Science, vol. 4, no. 8, pp. 2682-2699, 2011.
[7] J. R. Dahn, T. Zheng, Y. Liu & J. Xue, "Mechanisms for lithium insertion in carbonaceous materials", Science, vol. 270, no. 5236, pp. 590-593, 1995.
[8] K. Sato, M. Noguchi, A. Demachi, N. Oki & M. Endo, "A mechanism of lithium storage in disordered carbons", Science, vol. 264, no. 5158, pp. 556-558, 1994.
[9] K. Persson, V. A. Sethuraman, L. J. Hardwick, Y. Hinuma, Y. S. Meng, A. Van Der Ven & V. Srinivasan, "Lithium diffusion in graphitic carbon," The journal of physical chemistry letters, vol. 1, no. 8, pp. 1176-1180, 2010.
[10] س. ع. حسینی مرادی، ن. قبادی و م. امیرزاده، "ساخت الکترودهای ابرخازنیِ نیکل منگنز اکسید (NiMnO3) نانوصفحهای با استفاده از روش سنتز هیدروترمال،" فرآیندهای نوین در مهندسی مواد، دوره 2، شماره 17، ص 25-33، 1402.
[11] M. Azadfalah, A. Sedghi, A. Mehdikhani & H. Hosseini, "Enhancing Electrochemical Performance of Super capacitors Electrode Using Nickel-Based Metal-Organic", Advanced Processes in Materials Engineering, vol. 3, no. 16, pp. 55-70, 1401. [Online]. Available: http://sanad.iau.ir/fa/Article/1089929.
[12] X. Wu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhangad & J. G. Zhang, "Lithium metal anodes for rechargeable batteries", Energy & Environmental Science, vol. 7, no. 2, pp. 513-537, 2014.
[13] N. Nitta, F. Wu, J. T. Lee & G. Yushin, "Li-ion battery materials: present and future", Materials today, vol. 18, no. 5, pp. 252-264, 2015.
[14] C. J. Orendorff & D. H. Doughty, "Lithium ion battery safety", The Electrochemical Society Interface, vol. 21, no. 2, pp. 35-35, 2012.
[15] S. Scharner, W. Weppner & P. Schmid‐Beurmann, "Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1. 33Ti1. 67 O 4 Spinel", Journal of the Electrochemical Society, vol. 146, no. 3, pp. 857-861, 1999.
[16] M. Wagemaker, D. R. Simon, E. Kelder & J. Schoonman, "A kinetic two‐phase and equilibrium solid solution in spinel Li4+ xTi5O12", Advanced Materials, vol. 18, no. 23, pp. 3169-3173, 2006.
[17] J. F. Colin, V. Godbole & P. Novák, "In situ neutron diffraction study of Li insertion in Li4Ti5O12", Electrochemistry communications, vol. 12, no. 6, pp. 804-807, 2010.
[18] N. Kumagai, Y. Koishikawa, S. Komaba & N. Koshiba, "Thermodynamics and Kinetics of Lithium Intercalation into Nb2 O 5 Electrodes for a 2 V Rechargeable Lithium Battery", Journal of the Electrochemical Society, vol. 146, no. 9, p. 3203, 1999.
[19] A. L. Viet, M. Reddy, R. Jose, B. Chowdari & S. Ramakrishna, "Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries", The Journal of Physical Chemistry C, vol. 114, no. 1, pp. 664-671, 2010.
[20] H. Zhang, Y. Wang, P. Liu, S. L. Chou & et al., "Highly ordered single crystalline nanowire array assembled three-dimensional Nb3O7 (OH) and Nb2O5 superstructures for energy storage and conversion applications", ACS nano, vol. 10, no. 1, pp. 507-514, 2016.
[21] V. Pralong, A. R. Munnangi, V. Caignaert & S. Malo, "A new form of LiNbO3 with a lamellar structure showing reversible lithium intercalation", Chemistry of Materials, vol. 23, no. 7, pp. 1915-1922, 2011.
[22] Q. Fan, L. Lei & Y. Sun, "Facile synthesis of a 3D-porous LiNbO 3 nanocomposite as a novel electrode material for lithium ion batteries", Nanoscale, vol. 6, no. 13, pp. 7188-7192, 2014.
[23] J. T. Han, D. Q. Liu, S. H. Song, Y. Kim & J. B. Goodenough, "Lithium ion intercalation performance of niobium oxides: KNb5O13 and K6Nb10. 8O30", Chemistry of Materials, vol. 21, no. 20, pp. 4753-4755, 2009.
[24] Y. Lu, J. B. Goodenough, G. K. P. Dathar, G. Henkelman, J. Wu & K. Stevenson, "Behavior of Li guest in KNb5O13 host with one-dimensional tunnels and multiple interstitial sites", Chemistry of Materials, vol. 23, no. 13, pp. 3210-3216, 2011.
[25] G. Li, X. Wang & X. Ma, "Tetragonal VNb 9 O 24.9-based nanorods: a novel form of lithium battery anode with superior cyclability", Journal of Materials Chemistry A, vol. 1, no. 40, pp. 12409-12412, 2013.
[26] J. T. Han & J. B. Goodenough, "3-V full cell performance of anode framework TiNb2O7/spinel LiNi0. 5Mn1. 5O4", Chemistry of materials, vol. 23, no. 15, pp. 3404-3407, 2011.
[27] J. T. Han, Y. H. Huang & J. B. Goodenough, "New anode framework for rechargeable lithium batteries", Chemistry of Materials, vol. 23, no. 8, pp. 2027-2029, 2011.
[28] C. Yang, D. Ma, J. Yang & M. Manawan, "Crystallographic Insight of Reduced Lattice Volume Expansion in Mesoporous Cu2+‐Doped TiNb2O7 Microspheres during Li+ Insertion", Advanced Functional Materials, vol. 33, no. 15, p. 2212854, 2023.
[29] H. Choi, T. Kim & H. Park, "Defect engineering of TiNb2O7 compound for enhanced Li-ion battery anode performances", Electrochimica Acta, vol. 404, p. 139603, 2022.
[30] C. Lei, X. Qin, S. Huang, T. Wei & Y. Zhang, "Mo‐Doped TiNb2O7 Microspheres as Improved Anode Materials for Lithium‐Ion Batteries", ChemElectroChem, vol. 8, no. 17, pp. 3379-3383, 2021.
[31] K. Liu, J. A. Wang, J. Yang, D. Zhao & et al., "Interstitial and substitutional V5+-doped TiNb2O7 microspheres: a novel doping way to achieve high-performance electrodes", Chemical Engineering Journal, vol. 407, p. 127190, 2021.
[32] A. Shi, Y. Zhang, Sh. Geng, X. Song & et al., "Highly oxidized state dopant induced Nb-O bond distortion of TiNb2O7 for extremely fast-charging batteries", Nano Energy, vol. 123, p. 109349, 2024.
[33] Y. Zhang, M. Zhang, Y. Liu, H. Zhu & et al., "Oxygen vacancy regulated TiNb2O7 compound with enhanced electrochemical performance used as anode material in Li-ion batteries", Electrochimica Acta, vol. 330, p. 135299, 2020.
[34] X. Zhang, Z. Zhang, J. Zhang, W. Mao, K. Bao & Y. Qian, "Nano silver modified TiNb2O7 as high-rate lithium-ion storage materials", Inorganic Chemistry Communications, vol. 151, p. 110422, 2023.
[35] G. Liu, X. Liu, Y. Zhao, X. Ji & J. Guo, "Synthesis of Ag-coated TiNb2O7 composites with excellent electrochemical properties for lithium-ion battery", Materials Letters, vol. 197, pp. 38-40, 2017.
[36] H. Aghamohammadi, N. Hassanzadeh & R. Eslami-Farsani, "A review study on titanium niobium oxide-based composite anodes for Li-ion batteries: Synthesis, structure, and performance", Ceramics International, vol. 47, no. 19, pp. 26598-26619, 2021.
[37] H. Aghamohammadi, R. Eslami-Farsani & H. I. Oskouei, "Electrochemical performance of TiNb2O7/graphene/CNTs hybrid nanocomposites as anode materials for Li-ion batteries", Diamond and Related Materials, vol. 141, p. 110654, 2024.
[38] H. Aghamohammadi & R. Eslami-Farsani, "Effects of calcination parameters on the purity, morphology, and electrochemical properties of the synthesized TiNb2O7 by the solvothermal method as anode materials for Li-ion batteries", Journal of Electroanalytical Chemistry, vol. 917, p. 116394, 2022.
[39] H. I. Oskouei, H. Aghamohammadi & R. Eslami-Farsani, "Electrochemical performance of TiNb2O7 nanoparticles anchored with different contents of MWCNTs as anode materials for Li-ion batteries", Ceramics International, vol. 48, no. 10, pp. 14717-14725, 2022.
[40] H. Aghamohammadi & R. Eslami-Farsani, "Synthesis and electrochemical performance of TiNb2O7 nanoparticles grown on electrochemically prepared graphene as anode materials for Li-ion batteries", Journal of Power Sources, vol. 535, p. 231418, 2022.
[41] Y. Wu, D. Liu, D. Qu & J. Li, "Porous oxygen-deficient TiNb2O7 spheres wrapped by MXene as high-rate and durable anodes for liquid and all-solid-state lithium-ion batteries," Chemical Engineering Journal, vol. 438, p. 135328, 2022.
[42] H. Aghamohammadi, N. Hassanzadeh & R. Eslami-Farsani, "A comprehensive review study on pure titanium niobium oxide as the anode material for Li-ion batteries", Journal of Alloys and Compounds, vol. 911, p. 165117, 2022.
[43] S. R. Kia & M. Khodaei, "Synthesis of TiNb 2 O 7 by mechanical alloying and subsequent heat treatment as an anode material for Li-ion batteries", in 2023 5th Iranian International Conference on Microelectronics (IICM), 2023: IEEE, pp. 195-198.
[44] G. B. Thiyagarajan, V. Shanmugam, M. Wilhelm, S. Mathur, S. B. Moodakare & R. Kumar, "TiNb2O7-Keratin derived carbon nanocomposites as novel anode materials for high-capacity lithium-ion batteries", Open Ceramics, vol. 6, p. 100131, 2021.
[45] B. Guo, X. Yu, X. G. Sun, M. Chi & et al., "A long-life lithium-ion battery with a highly porous TiNb 2 O 7 anode for large-scale electrical energy storage", Energy & Environmental Science, vol. 7, no. 7, pp. 2220-2226, 2014.
[46] A. Rahmani & M. Khodaei, "Hard and soft templating approaches in evaporative sol-gel synthesis of TiNb2O7 nanostructures as active materials for Li-ion batteries", Journal of Sol-Gel Science and Technology, pp. 1-11, 2024.
[47] L. Hu, C. Lin, C. Wang & Y. Chao, "TiNb2O7 nanorods as a novel anode material for secondary lithium-ion batteries", Functional Materials Letters, vol. 9, no. 06, p. 1642004, 2016.
[48] S. Lou, X. Cheng, Y. Zhao, A. Lushington & et al., "Superior performance of ordered macroporous TiNb2O7 anodes for lithium ion batteries: understanding from the structural and pseudocapacitive insights on achieving high rate capability", Nano Energy, vol. 34, pp. 15-25, 2017.
[49] H. Li, Y. Zhang, Y. Tang, F. Zhao & et al., "TiNb2O7 nanowires with high electrochemical performances as anodes for lithium ion batteries", Applied Surface Science, vol. 475, pp. 942-946, 2019.
[50] L. Fei, Y. Xu, X. Wu, Y. Li & et al., "SBA-15 confined synthesis of TiNb 2 O 7 nanoparticles for lithium-ion batteries", Nanoscale, vol. 5, no. 22, pp. 11102-11107, 2013.
[51] H. Li, L. Shen, J. Wang, Sh. Fang & et al., "Three-dimensionally ordered porous TiNb 2 O 7 nanotubes: A superior anode material for next generation hybrid supercapacitors", Journal of Materials Chemistry A, vol. 3, no. 32, pp. 16785-16790, 2015.
[52] K. J. Griffith, I. D. Seymour, M. A. Hope, M. M. Butala, L. K. Lamontagne & et al., "Ionic and electronic conduction in TiNb2O7", Journal of the American Chemical Society, vol. 141, no. 42, pp. 16706-16725, 2019.
[53] Y. Harada, N. Takami, H. Inagaki & Y. Yoshida, "Battery active material, nonaqueous electrolyte battery and battery pack", USA Patent Appl. 13/281,968, 2016.
[54] J. Tauc, "Optical properties and electronic structure of amorphous Ge and Si", Materials research bulletin, vol. 3, no. 1, pp. 37-46, 1968.
[55] J. Tauc, R. Grigorovici & A. Vancu, "Optical properties and electronic structure of amorphous germanium", physica status solidi (b), vol. 15, no. 2, pp. 627-637, 1966.
[56] P. Yu, "Fundamentals of semiconductors", Springer, 2005.
[57] L. Kavan, M. Zukalová, M. Kalbáč & M. Graetzel, "Lithium insertion into anatase inverse opal", Journal of the Electrochemical Society, vol. 151, no. 8, p. A1301, 2004.
[58] P. Roy, S. Berger & P. Schmuki, "TiO2 nanotubes: synthesis and applications", Angewandte Chemie International Edition, vol. 50, no. 13, pp. 2904-2939, 2011.
[59] X. Lu, Z. Jian, Zh. Fang, L. Gu & et al., "Atomic-scale investigation on lithium storage mechanism in TiNb 2O7", Energy & Environmental Science, vol. 4, no. 8, pp. 2638-2644, 2011.
[60] J. Fan, Zh. Chen, Ch. Liang, K. Tao & et al., "10 μm‐Level TiNb2O7 Secondary Particles for Fast‐Charging Lithium‐Ion Batteries", Chemistry–A European Journal, vol. 30, no. 6, p. e202302857, 2024.
[61] Y. Zhang, C. Kang, W. Zhao, B. Sun & et al., "Crystallographic engineering to reduce diffusion barrier for enhanced intercalation pseudocapacitance of TiNb2O7 in fast-charging batteries," Energy Storage Materials, vol. 47, pp. 178-186, 2022.