Characterization of Thermal and Structural Properties of Poly Lactic Acid Parts Fabricated By Fused Depositing Modeling
Subject Areas :Mohsen Khalilian 1 , Said Golabi 2 , Mohammad Khodaei 3 *
1 - PhD Student, Mechanical Engineering Department, Kashan University, Kashan, Iran.
2 - Professor, Mechanical Engineering Department, Kashan University, Kashan, Iran.
3 - Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
Keywords: Fused deposition modeling, Bone tissue engineering, Poly Lactic Acid Implant, Printing Temperature,
Abstract :
Poly Lactic Acid implants are a good candidate for bone tissue engineering due to their favorable biodegradability and mechanical properties. In this study, after studying the structural and thermal properties of polymer by Fourier transform infrared spectroscopy (FTIR), differential calorimetery analysis (DSC), thermal gravimetery analysis (TG) and X-ray diffraction (XRD) tests, to determine the appropriate temperature range of 3D printing, rigid polylactic acid (PLA) implants were prepared by Fused Deposition Modeling FDM at three different temperatures of 200, 210 and 220 °C as standard tensile test specimens. The results of the tensile test showed that in this range, as the print temperature increased, the samples had higher strength and higher fracture stress. Also to further investigate the effect of the FDM temperature, scanning electron microscopy (SEM) images were taken from the surface of the printed samples. Microscopic images show that as the print temperature increases, the melt spray and diffusion are more severe and the sample surface is rough. The results show that 210 °C is the optimum temperature for PLA printing.
[1] C. E. Corcione, F. Gervaso, F. Scalera, S. K. Padmanabhan, M. Madaghiele, F. Montagna, A. Sannino, A. Licciulli & A. Maffezzoli, "Highly loaded hydroxyapatite microsphere/ PLA porous scaffolds obtained by fused deposition modeling", Ceramics International, https://doi.org/10.1016/j.ceramint.2018.07.297.
[2] W. Lin, H. Shen, G. Xu, L. Zhang, J. Fu & X. Deng, "Single-layer temperature-adjusting transition method to improve the bond strength of 3D-printed PCL/PLA parts", Composites Part A, vol. 115, pp. 22-30, 2018.
[3] K. Kun, "Reconstruction and development of a 3D printer using FDM technology", Procedia Engineering, vol. 149, pp. 203–211, 2016.
[4]. M. Rinaldi, T. Ghidini, F. Cecchini, A. Brandao & F. Nanni, "Additive layer manufacturing of poly (ether ether ketone) via FDM", Composites Part B, 2018, doi: 10.1016/j.compositesb.2018.03.029.
[5] F. Shady, et al. "Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications — A Comprehensive Review", Advanced Drug Delivery Reviews, vol. 107, pp. 367–92, 2016.
[6] M. Murariu & P. Dubois, "PLA composites: From production to properties", Advanced Drug Delivery Reviews, vol. 107, pp. 17-46, 2016.
[7] G. Gomez-Gras, R. Jerez-Mesa, J. A. Travieso-Rodriguez & J. Lluma-Fuentes, "Fatigue performance of fused filament fabrication PLA specimens", Materials & Design, 2017, doi:10.1016/j.matdes.2017.11.072.
[8] T. Rimpongpisarn, W. Wattanathana, K. Sukthavorn, N. Nootsuwan, Y. Hanlumyuang, C. Veranitisagul & A. Laobuthee, "Novel luminescent PLA/MgAl2O4: Sm3+ composite filaments for 3D printing application", Materials Letters, vol. 237, pp. 270–273, 2019.
[9] J. O. Akindoyo, M. D.H. Beg, S. Ghazali, H. P. Heim & M. Feldmann, "Impact modified PLA-hydroxyapatite composites-Thermo-mechanical properties", Composites Part A, vol 107, pp. 326–333, 2018.
[10] D. Wu, A. Spanou, A. Diez-Escudero & C. Persson, "3D-printed PLA/HA composite structures as synthetic trabecular bone: A feasibility study using Fused Deposition Modelling", Journal of the Mechanical Behavior of Biomedical Materials, 2020, doi: https://doi.org/10.1016/j.jmbbm.2019.103608.
[11] R. A. Wach, P. Wolszczak & A. Adamus-Wlodarczyk, "Enhancement of Mechanical Properties of FDM-PLA Parts via Thermal Annealing", Macromolecular Materials and Engineering, vol. 1, pp. 1800169, 2018.
[12] م. خورسندقاینی، ع. صادقی اول شهر، س. نوخاسته، ا. م. مولوی و ح. امینی مشهدی، "بررسی خصوصیات حرارتی کامپوزیت پلی لاکتیک اسید با ذرات شیشه زیست فعال 45S5 و هیدروکسی آپاتیت (HA) به منظور استفاده در پیچهای تداخلی قابلجذب"، فرآیندهای نوین در مهندسی مواد، سال 11 ، شماره 4، 55-65، 1396.
[13] S. Mohammadian-Gezaz, I. Ghasemi & A. R. Oromiehie, "Crystallization Behavior of PA6 in ABS/PA6 Blends Prepared by In Situ Polymerization and Compatibilization Method", Iranian Journal of Polymer Science and Technology, vol. 22, pp. 469-482, 2010.
[14] F. Alam, V. Raj Shukla, K. M. Varadarajan & S. Kumar, "Microarchitected polylactic acid (PLA) nanocomposite scaffolds for biomedical applications", Journal of the Mechanical Behavior of Biomedical Materials, 2020, doi: https://doi.org/10.1016/j.jmbbm.2019.103576.
[15] م. خدائی و ر امینی نجفآبادی، "آنیزوتروپی خواص مکانیکی داربستهای پلی لاکتیک اسید تولید شده به روش لایه نشانی مذاب برای مهندسی بافت استخوان"، فرآیندهای نوین در مهندسی مواد، آماده انتشار.
_||_