Investigation of TiO2 influence on quality of the blends of clays from Semirom and Gheshlagh Mines for using in refractory industry
Subject Areas :
1 - عضو هیات علمی دانشگاه آزاد اسلامی واحد شهر مجلسی
2 - استادیار، گروه زمین شناسی، واحد بندرعباس، دانشگاه آزاد اسلامی
Keywords: Rutile, chemical analysis, Fire Clay, Kaoline, Phase Changes,
Abstract :
In this project, the blends of two row materials which were made up of clays from Simirom- and Gheshlagh-mines were examined to determine their thermal behavior for production of fire-bricks. The reason of blending these two materials was the high content of TiO2 (5.08 %) in clay from Gheshlagh and low percentage of titanium-dioxide (1.52 %) in clay from Simirom. Some samples of mixed substances were burned at temperatures of 1340 and 1600 °C for 5 hours. The chemical and mineralogical compositions of the raw and burned materials were determined by using XRF, XRD and SEM. The constituent minerals of the raw material are kaollinite, dickite, geothite and quartz in the clay from Simirom and kaollinite, boehmite, rutile, diaspor(?), dickite, and goethite in the substance from Gheshlagh. The burned mixed materials consisted of mullite, silica and rutile. According to the data resulting of examinations, the suitable mixture of two materials with different contents of TiO2 can make it possible to have an appropriate mixed material for using in refractory industry.
[1] S. B. Hassan, “Modern Refractories: Production, Testing and Application”, Timo Commercial Printers Samaru, Zaria, first edition, pp. 13-22, 28-40, 2005.
[2] F. O. Aramide & S. O. Seidu, “Production of Refractory Lining for Diesel Fired Rotery Furnace, from Locally Sourced Kaoline and Potter,s Clay”, Journal of Minerals and Materials Characterization and Enginnering, Vol. 1, pp. 75-79, 2013.
[3] Encyclopædia Britannica, “Clay Mineral”, Ultimate Reference Suite, Encyclopædia Britannica. Chicago, IL, 2008.
[4] Encyclopædia Britannica. “Refractory”, Ultimate Reference Suite. Encyclopædia Britannica. Chicago, IL, 2008.
[5] Jock, F. A. Ayeni, L. S. Jongs & N. S. Kangpe, “Development of Refractory Bricks from Nigerian Nafutu Clay Deposit”, International Journal of Materials, Methods and Technologies, Vol. 1, No. 10, 2013.
[6] Russell, Refractory Bauxite Changing Face of Supply, Industrial Minerals, October, PP. 52-67, 1997.
[7] ح. پایدار، "مواد اولیه مصرفی در صنایع سرامیک"، نشر غزل، اصفهان، دانشگاه آزاد اسلامی واحد شهر مجلسی، 369 ص، 1384.
[8] ح. پایدار، "تکنولوژی فراوردههای چینی"، انتشارات دانشگاه آزاد اسلامی، واحد شهر مجلسی، 369 ص، 1387.
[9] P. I. Lecher & M. O. Desilets, “A review of the use of loss on ignition as a measurement of total volatile in whole rock analysis”, Chemical Geology, pp. 341-344, 2013
[10] G. H. Chester, “Refractories production and properties”, the iron and steel institute, London, pp. 562, 1983.
[11] S. Iwai, H. Tagai & T. Shimamune, “Procedure for dickit structure modification by dehydration”, Acta Crystallography, Vol. 27B, pp. 248 – 250, 1971.
[12] K. Srikrishna, G. Thomas, R. Martinez, M. P. Corral, S. De Az & J. S. Moya, “Kaolinite-mulli reaction series”, J. Mater. Vol. 25, pp. 607 – 612, 1990.
[13] I. W. M. Brown, K. J. D. Mackenzie, M. E. Bowen & R. H. Meinhold, “Outstanding problems in the kaolinite-mullite reaction sequence investigated by Si and Al solidstate nuclear magnetic resonance: High-temperature transformations of metakaolinite”, Am J. Ceram, Vol. 68, pp. 298-301, 1995.
[14] C. Baudin & J. S. Moya, “Influence of Titanium Dioxide on the Sintering and Microstructural Evolution of Mullite”, Commun. Of the Am. Ceramic, Vol. 134C, 1984.
[15] B. Y. Huang & T. D. McGeen, Secondary Expansion of Mullite Refractories Containing Calcined Bauxite and Calcined Clay, Ceramic Bulletin, Vol. 67, No. 7, pp. 16-21, 1988.
[16] H. Schröcke & K. L. Weiner, “Mineralogie”, Walter de Gruyter, Berlin. New York, pp. 952, 1981.