Subject Areas :
محمد خدائی 1 , محمود مرآتیان 2 , امید صوابی 3 , محمد حسین فتحی 4
1 - هیات علمی دانشگاه آزاد اسلامی- واحد شهر مجلسی
2 - دانشگاه صنعتی اصفهان
3 - دانشگاه علوم پزشکی اصفهان
4 - دانشگاه صنعتی اصفهان
Keywords:
Abstract :
[1] م. ح. فتحی و و.س. مرتضوی، "خواص و کاربرد پزشکی بیومواد فلزی"، انتشارات ارکان، 1382.
[2] م. رفیعینیا و ش. بنکدار، ″بیومتریالها، اصول و کاربردها"، انتشارات دانشگاه صنعتی امیرکبیر، 1386.
[3] ف. س. طباطبایی، س.ر. معتمدیان، ف. قلیپور، ک. خسرویانی و آ. خجسته،" داربستهای مورد استفاده در مهندسی استخوان فک و صورت و جمجمه بواسطه سلولهای بنیادی: مرور نظاممند" مجله دانشکده دندانپزشکی- دانشگاه علوم پزشکی شهید بهشتی، دوره 30، شماره 2، 113-130، تابستان 1391.
[4] G. Ryan, A. Pandit & D. P. Apatsidis, “Fabrication methods of porous metals for use in orthopedic applications”, Biomaterials, Vol. 27, pp. 2651–2670, 2006.
[5] J. Banhart, “Manufacture, characterization and application of cellular metals and metal foams”, Progress in Materials Science, Vol. 46, pp. 559–632, 2001.
[6] J. P. Li, P. Habibovic, M. van den Doel, C. E. Wilson, J. R. de Wijn, C. A. van Blitterswijk & K. de Groot, “Bone ingrowth in porous titanium implants produced by 3D fiber deposition”, Biomaterials, Vol. 28, pp. 2810–2820, 2007.
[7] N. Jha, D. P. Mondal, J. DuttaMajumdar, A. Badkul, A. K. Jha & A. K. Khare, “Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route”, Materials and Design, Vol. 47, pp. 810–819. 2013.
[8] A. Bansiddhi, T. D. Sargeant, S. I. Stupp & D. C. Dunand,“Porous NiTi for bone implants: A review”, ActaBiomaterialia, Vol. 4, pp. 773–782, 2008.
[9] M. Barrabés, P. Sevilla, J. A. Planell & F. J. Gil, “Mechanical properties of nickel–titanium foams for reconstructive orthopedics”, Materials Science and Engineering C, Vol. 28, pp. 23–27, 2008.
[10] W. H. Lee & C. Y. Hyun, “Fabrication of fully porous and porous-surfaced Ti-6Al-4V implants by electro-discharge-sintering of spherical Ti-6Al-4V powders in a one-step process”, Journal of Materials Processing Technology, Vol. 189, pp. 219–223, 2007.
[11] C. E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino & T. Asahina, “Processing of biocompatible porous Ti and Mg”, ScriptaMaterialia, Vol. 45, pp. 1147-1153, 2001.
[12] Z. Esen & S. Bor, “Processing of titanium foams using magnesium spacer particles”, ScriptaMaterialia, Vol. 56, pp. 341–344, 2007.
[13] M. MontasserDewidar, J. K. Lim, “Properties of solid core and porous surface Ti–6Al–4V implants manufactured by powder metallurgy”, Journal of Alloys and Compounds, Vol. 454, pp. 442–446, 2008.
[14] A. Bansiddhi & D. C. Dunand, “Shape-memory NiTi foams produced by replication of NaCl space-holders”, ActaBiomaterialia, Vol. 4, pp. 1996–200, 2008.
[15] X. Wang, Y. Li, J. Xiong, P. D. Hodgson & C. Wen, “Porous TiNbZr alloy scaffolds for biomedical applications”, ActaBiomaterialia, Vol. 5, pp. 3616–3624, 2009.
[16] J. Wieding, A. Wolf & R. Badr, “numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone”, journal of the mechanical behavior of biomedical materials, Vol. 37, pp. 56-68, 2014.
[17] N. Wenjuan, B. Chenguang, Q. Guibao & W. Qiang, “Processing and properties of porous titanium using space holder technique” Materials Science and Engineering, Vol. 506A, pp. 148-151. 2009.
[18] A. P. Rubstein, E. B. Makarova, I. Sh. Trahktenberg, I. P. Kudryavtseva & D. G. bliznets, “Osseointegration of porous titanium modified by diamond-like carbon and carbon nitride”, Diamond and related materials, Vol. 22, pp. 128-135, 2012.