Numerical modeling of impulse waves resulting from solid and granular mass sliding in FLOW-3D software
Subject Areas : watere sciencesMohammad Rashidi 1 , Alireza Yazdani 2 * , Shamsa Basirat 3 , Mohsen Saadat 4
1 - Ph.D. student, Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan 81346, Iran.
2 - Assistant Prof., Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan 81346, Iran.
3 - Assistant Prof., Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan 81346, Iran.
4 - Assistant Prof., Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan 81346, Iran.
Keywords: Impulse waves, Sliding mass, Numerical model, FLOW-3D,
Abstract :
The most important factor in the formation of impulse waves in the reservoir of the dam is caused by the landslide of the walls of the dam reservoir, because these waves, which are known as impulse waves, are very large and destructive. The importance of comprehensive studies regarding the sliding of objects and falling into water and the formation of impulse waves has caused many researchers to conduct research on this scientific phenomenon. Numerical modeling is the most suitable method for investigating the movement of floating, submerged and submerged objects in water, both in terms of engineering and economics. Among the well-known numerical modeling that can be used in the action of fluid and structure and the propagation of impulse waves, we can use finite element method, boundary element method, fluid volume method, finite difference method, and finite volume method. And the hydrodynamic method of smooth particles pointed out. In this article, in order to numerically investigate the waves resulting from solid and granular mass sliding, the general steps of the modeling method in FLOW-3D software will be presented. Also, the output results of the numerical solution of the slip wave model for solid and granular masses have been researched and investigated with the help of FLOW-3D software.
آشتیانی، ب.ع. و جیلانی، ع.ن. 1387. شبیه سازی آزمایشگاهی امواج ضربه ای ناشی از رخداد لغزش دیواره در مخازن سدها. چهارمین کنگره ملی مهندسی عمران.
رامشه، س.ی. و آشتیانی، ب.ع. 1388. شبیه سازی عددی امواج ضربه ای ناشی از زمین لغزش دریاچه سد شفا رود ایران. هشتمین کنگره بین المللی مهندسی عمران, 1388.
رامشه، س.ی.، آشتیانی، ب.ع. و جیلانی، ع.ن. 1387. شبیه سازی عددی امواج ضربه ای ناشی از زمین لغزشهای دریاچه سد ماکو در ایران. مجله مهندسی دانشگاه آزاد اسلامی، 1(3).
فاضلی، م. و عسگري، م. 1399. شبیه سازی عددی سه بعدی تولید امواج ناشی از زمین لغزش در مخازن سدها (مطالعه موردی سد سیاه بیشه). نشریه هیدرولیک.
فدافن، م.آ. و کرمانی، م.ح. 1392. مدل سازی دو بعدی امواج ناشی از لغزش صخره به مخزن سد. همایش مهندسی عمران و توسعه پایدار با محوریت کاهش خطر پذیری در بلایای طبیعی، موسسه آموزش عالی خاوران، مشهد.
An, Y., Wu, Q., Shi, C. and Liu, Q. 2016. Three-dimensional smoothed-particle hydrodynamics simulation of deformation characteristics in slope failure. Géotechnique, 66(8): 670-680.
Ataie-Ashtiani, B. and Jilani, A.N. 2008. Laboratory Investigations on Impulsive Waves Caused by under Water Landslide. Coastal Engineering, 55: 989-1004.
Ataie-Ashtiani, B. and Yavari-Ramshe, S. 2011. Numerical simulation of wave generated by landslide incidents in dam reservoirs. Landslides, 8(4): 417-432.
Ataie-Ashtiani, B.and Jilani, A.N. 2007. A higher-order boussinesq-type model with moving bottom boundary: applications to submarine landslide tsunami waves. international journal for numerical methods in fluids, 53(6): 1019-1048.
Chen, G., Kharif, C., Zaleski, S. and Li, J. 1999. Two-dimensional Navier–Stokes simulation of breaking waves. Physics of fluids, 11(1): 121-133.
Grilli, S.T. and P. Watts, P. 2005. Tsunami generation by submarine mass failure, I: modeling, experimental Validation, and sensitivity analyses. Journal of waterway port, coastal, and ocean engineering, 131(6): 283-297.
Grilli, S.T., Vogelmann, S. and Watts, P. 2002.development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Engineering analysis with boundary elements, 26(4): 301-313.
Lotfi, E., Safarzadeh, A. and H. Habibzadeh, H. 2013. Using moving object for investigation of various parameter in landslide impact waves, in 1th national conference of geotechnics. (in persian)
Monagan, J., Kos, A. and Issa, N. 2003. Fluid motion generated by impact, ASCEJ. of water ways coastal and OC.Eng.129(6): 250-259.
Monaghan, J. and Kos, A. 2000. scott russell’s wave generator. physics of fluids, 12(3): 630-622.
Khoolosi, V., & Kabdaşli, S. 2016. Numerical simulation of impulsive water waves generated by subaerial and submerged landslides incidents in dam reservoirs. Civil Engineering Journal, 2(10), 497-519.
Viroulet, S., Cébron, D., Kimmoun, O. and Kharif, C. 2012. Evolution of water waves generated by subaerial solid landslide. In 27th International Workshop and Water Waves and Floating Bodies (IWWWFB).
Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J. and Tappin, D. R. 2003. Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural hazards and earth system sciences, 3(5): 391-402.