Effect of Beta asarone on concentration of TNF-α in a rat model of Alzheimer’s disease
Subject Areas :
Veterinary Clinical Pathology
Golshid Saki
1
,
Akram Eidi
2
*
,
Pejman Mortazavi
3
,
Akbar Vahdati
4
,
Negar Panahi
5
1 - PhD. Graduate, Department of Biology, Faculty of Basic Science, Fars Science and Research branch, Islamic Azad University, Fars, Iran؛ PhD. Graduate, Department of Biology, Faculty of Science, Agriculture and New Technologies, Shiraz
2 - Professor, Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 - - Associate Professor, Department of Pathology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
4 - Professor, Department of Biology, Faculty of Basic Science, Fars Science and Research branch, Islamic Azad University, Fars, Iran؛ Professor, Department of Biology, Faculty of Science, Agriculture and New Technologies, Shiraz Branch,
5 - Assistant Professor, Department of Basic Sciences, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Received: 2018-01-16
Accepted : 2018-10-24
Published : 2021-04-21
Keywords:
Alzheimer,
Rat,
β-asarone,
β-amyloid,
Tumor Necrosis Factor-alpha,
Abstract :
Beta asarone which is the major component of Acorus tatarinowii Schott, can pass through the blood-brain-barrier and affect the central nervous system. In the present study, effect of beta asarone on TNF-α level was investigated in β-amyloid-induced alzheimeric male rats. The adult male rats were randomly divided into 9 groups of 6: normal control, sham-operated control, β-asarone (12.5, 25 and 50 mg/kg PO, daily for 50 days), alzheimeric control (bilateral intrahippocampal injection of 4 µl of β-amyloid 1-42) and alzheimeric β-asarone receiving (12.5, 25 and 50 mg/kg PO β-asarone daily for 30 days following β-amyloid injection and subsequent doses of beta asarone for 3 weeks). The rats were sacrificed at the end of the experiment and the TNF-α level was measured in brain homogenate. Our results showed that administration of β-asarone (25 and 50 mg/kg) significantly decreased the TNF-α level (p<0.001) in alzheimeric rats. Thus, these results indicate that β-asarone is effective in providing protection against inflammation induced by β-amyloid.
References:
Alderton, W.K., Cooper, C.E. and Knowles, R.G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochemical Journal, 357(3): 593-615.
Alvarez, A., Cacabelos, R., Sanpedro, C., Garcia-Fantini, M. and Aleix-andre, M. (2007). Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiology of Aging, 28(4): 533-536.
Ansari, N. and Khodagholi, F. (2013). Natural products as promising drug candidates for the treatment of Alzheimer’s disease: molecular mechanism aspect. Current Neuropharmacology, 11(4): 414-429.
Bertram, L., Lill, C.M. and Tanzi, R.E. (2010). The genetics of Alzheimer disease: back to the future. Neuron, 68(2): 270-281.
Chang, W. and Teng, J. (2015). β-asarone prevents Aβ25-35-induced inflammatory responses and autophagy in SH-SY5Y cells: down expression Beclin-1, LC3B and up expression Bcl-2. International Journal of Clinical and Experimental Medicine, 8(11): 20658-20663.
Chen, X., Walker, D.G., Schmidt, A.M., Arancio, O., Lue, L.F. and Yan, S.D. (2007). RAGE: a potential target for Abeta-mediated cellular perturbation in Alzheimer’s disease. Current Molecular Medicine, 7(8): 735-742.
Chen, Y.Z., Wang, Q.W., Liang, Y. and Fang, Y.Q. (2007). Protective effects of beta-asarone on cultured rat cortical neurons damage induced by glutamate. Zhong Yao Cai, 30(4): 436-438.
Cho, J., Kim, Y.H., Kong, J.Y., Yang, C.H. and Park, C.G. (2002). Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus. Life Sciences, 71(5): 591-599.
Chun, H.S., Kim, J.M., Choi, E.H. and Chang, N. (2008). Neuroprotective effects of several Korean medicinal plants traditionally used for stroke remedy. Journal of Medical Food, 11(2): 246-251.
Dobarro, M., Orejana, L., Aguirre, N. and Ramírez, M.J. (2013). Propranolol reduces cognitive deficits, amyloid β levels, tau phosphorylation and insulin resistance in response to chronic corticosterone administration. International Journal of Neuropsychopharmacology, 16(6): 1351-1360.
Fan, R., Xu, F., Previti, M.L., Davis, J., Grande, A.M., Robinson, J.K., et al. (2007). Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. Journal of Neuroscience, 27(12): 3057-3063.
Fang, F., Lue, L.F., Yan, S., Xu, H., Luddy, J.S., Chen, D., et al. (2010). RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. The FASEB Journal, 24(4): 1043-1055.
Fang, Y.Q., Fang, R.M., Fang, G.L., Jiang, Y. and Fu, S.Y. (2008). Effects of beta-asarone on expression of c-fos in kindling epilepsy rat brain. Zhongguo Zhong Yao Za Zhi, 33(5): 534-536.
Fang, Y.Q., Li, L. and Wu, Q.D. (2003). Effects of beta-asarone on gene expression in mouse brain. Zhong Yao Cai, 26(9): 650-652.
Fang, Y.Q. and Wei, G. (2002). To analyze if the Rhizoma Acori Tatarimowii naph-tha can go through the BBB or not with GC-MS. Zhong Yao Xin Yao Yu: Ling Chuang Yao Li, 13(3): 181-182.
Fu, S.Y., Fang, R.M., Fang, G.L., Xie, Y.H. and Fang, Y.Q. (2008). Effects of beta-asarone on expression of FOS and GAD65 in cortex of epileptic rat induced by penicillin. Zhong Yao Cai, 31(1): 79-81.
Geng, Y., Li, C., Liu, J., Xing, G., Zhou, L., Dong, M., et al. (2010). Beta-asarone improves cognitive function by suppressing neuronal apoptosis in the beta-amyloid hippocampus injection rats. Biological and Pharmaceutical Bulletin, 33(5): 836-843.
Han, L., Yin, K., Zhang, S., Wu, Z., Wang, C., Zhang, Q., et al. (2013). Dalesconols B inhibits lipopolysaccharide induced inflammation and suppresses NF-kappaB and p38/JNK activation in microglial cells. Neurochemistry International, 62(7): 913-921.
Huang, L., Deng, M., He, Y. and Fang, Y. (2015). β-asarone and levodopa coadministration protects against 6-OHDA-induced damage in parkinsonian rat mesencephalon by regulting autophagy: down expression Beclin-1 and LC3B and up expression p62. Clinical and Experimental Pharmacology and Physiology, 42(3): 269-277.
Imbimbo, B.P., Lombard, J. and Pomara, N. (2005). Pathophysiology of Alzheimer's disease. Neuroimaging Clinics of North America, 15(4): 727-753.
Jayasooriya, R.G., Kang, C.H., Seo, M.J., Choi, Y.H., Jeong, Y.K. and Kim, G.Y. (2011). Exopolysaccharide of Laetiporus sulphureus var. miniatus down regulates LPS-induced production of NO, PGE(2), and TNF-alpha in BV2 microglia cells via suppression of the NF-kappaB pathway. Food and Chemical Toxicology, 49(11): 2758-2764.
Jean, Y.Y., Baleriola, J., Fà, M., Hengst, U. and Troy, C.M. (2015). Stereotaxic infusion of oligomeric Amyloid-beta into the mouse hippocampus. Journal of Visualized Experiments, 100(6): e52805.
Kang, C.H., Jayasooriya, R.G., Dilshara, M.G., Choi, Y.H., Jeong, Y.K., Kim, N.D., et al. (2012). Caffeine suppresses lipopolysaccharide-stimulated BV2 microglial cells by suppressing Akt-mediated NF-kappaB activation and ERK phosphorylation. Food and Chemical Toxicology, 50(12): 4270-4276.
Klein, R.L., Dayton, R.D., Diaczynsky, C.G. and Wang, D.B. (2010). Pronounced micro gliosis and neurodegeneration in aged rats after tau gene transfer. Neurobiology of Aging, 31(12): 2091-2102.
Lee, B., Sur, B., Cho, S.G., Yeom, M., Shim, I., Lee, H., et al. (2015). Effect of Beta-Asarone on impairment of spatial working memory and apoptosis in the hippocampus of rats exposed to chronic corticosterone administration. Biomolecules and Therapeutics (Seoul), 23(6): 571-581.
Lee, B., Sur, B., Shim, I., Lee, H. and Hahm, D.H. (2014). Baicalin improves chronic corticosterone-induced learning and memory deficits via the enhancement of impaired hippocampal brain-derived neurotrophic factor and cAMP response element-binding protein expression in the rat. Journal of Natural Medicines, 68(1): 132-143.
Li, C., Xing, G., Dong, M., Zhou, L., Li, J., Wang, G., et al. (2010). Beta-asarone protection against beta-amyloid-induced neurotoxicity in PC12 cells via JNK signaling and modulation of Bcl-2 family proteins. European Journal of Pharmacology, 635(1-3): 96-102.
Li, Z., Zhao, G., Qian, S., Yang, Z., Chen, X., Chen, J., et al. (2012). Cerebrovascular protection of beta-asarone in Alzheimer’s disease rats: a behavioral, cerebral blood flow, biochemical and genic study. Journal of Ethnopharmacology, 144(2): 305-312.
Lim, H.W., Kumar, H., Kim, B.W., More, S.V., Kim, I.W., Park, J.I., et al. (2014). β-Asarone (cis-2,4,5-trimethoxy-1-allyl phenyl), attenuates pro-inflammatory mediators by inhibiting NF-κB signaling and the JNK pathway in LPS activated BV-2 microglia cells. Food and Chemical Toxicology, 72(10): 265-272.
Liu, J., Li, C., Xing, G., Zhou, L., Dong, M., Geng, Y., et al. (2010). Beta-asarone attenuates neuronal apoptosis induced by Beta amyloid in rat hippocampus. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan, 130(5): 737-746.
Lue, L.F., Walker, D.G., Brachova, L., Beach, T.G., Rogers, J., Schmidt, A.M., et al. (2001). Involvement of microglial receptor for advanced glycation end products (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Experimental Neurology, 171(1): 29-45.
Maltseva, A.V., Bystryakc, S. and Galzitskayad, O.V. (2011). The role of β-amyloid peptide in neurodegenerative diseases. Ageing Research Reviews, 10(4): 440-452.
Ojala, J., Alafuzoff, I., Herukka, S.K., Van Groen, T., Tanila, H. and Pirttilä, T. (2009). Expression of interleukin-18 is increased in the brains of Alzheimer's disease patients. Neurobiology of Aging, 30(2): 198-209.
Olajide, O.A., Bhatia, H.S., De Oliveira, A.C., Wright, C.W. and Fiebich, B.L. (2013). Antineuroinflammatory properties of synthetic cryptolepine in human neuroblastoma cells: possible involvement of NF-kappaB and p38 MAPK inhibition. European Journal of Medicinal Chemistry, 63(5): 333-339.
Paxinos, G. and Watson, C. (1998). The Rat Brain in Stereotaxic Coordinates. 4th ed., San Diego: Academic Press, pp: 45-46.
Pettigrew, L.C., Kindy, M.S., Scheff, S., Springer, J.E., Kryscio, R.J., Li, Y., et al. (2008). Focal cerebral ischemia in the TNFalpha-transgenic rat. Journal of Neuroinflammation, 5: 47.
Qaseem, A., Snow, V., Cross, J.T.J.r., Forciea, M.A., Hopkins, R.J.r., Shekelle, P., et al. (2008). Current Pharmacologic Treatment of Dementia: A Clinical Practice Guideline from the American College of Physicians and the American Academy of Family Physicians. Annal of Internal Medicine, 148(5): 370–378.
Qiduan, W.U., Qinghe, W.U., Qiwen, W. and Yuzhi, C. (2008). Study on anti-thrombosis effect of volatile oil of Acorus Tatarinowii Schott and b-asarone. Traditional Chinese Drug Research and Clinical Pharmacology, 19(1): 29-31.
Roozendaal, B., Hahn, E.L., Nathan, S.V., De Quervain, D.J. and McGaugh, J.L. (2004). Glucocorticoid effects on memory retrieval require concurrent noradrenergic activity in the hippocampus and basolateral amygdala. Journal of Neuroscience, 24(37): 8161-8169.
Saura, C.A. and Valero, J. (2011). The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Nature Reviews Neuroscience, 22(2): 153-169.
Thies, W. and Bleiler, L. (2012). Alzheimer’s disease facts and figures. Alzheimer's and Dementia, 8(2): 131-168.
Vaynman, S., Ying, Z. and Gomez-Pinilla, F. (2008). Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience, 122(3): 647-657.
Wang, D.B., Dayton, R.D., Zweig, R.M. and Klein, R.L. (2010). Transcriptome analysis of a tau overexpression model in rats implicates an early pro-inflammatory response. Experimental Neurology, 224(1): 197-206.
Wei, G., Chen, Y.B., Chen, D.F., Lai, X.P., Liu, D.H., Deng, R.D., et al. (2013). Beta Asarone inhibits neuronal apoptosis via the CaMKII/CREB/Bcl-2 signaling pathway in an in vitro model and AbetaPP/PS1 mice. Journal of Alzheimer’s Disease, 33(3): 863-880.
Willians, C.M., El Mohsen, M.A., Vauzour, D., Rendeiro, C., Butler, L.T., Ellis, J.A., et al. (2008). Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radical Biology and Medicine, 45(3): 295-305.
Yan, S.S., Chen, D., Yan, S., Guo, L., Du, H. and Chen, J.X. (2012). RAGE is a key cellular target for Abeta-induced perturbation in Alzheimer’s disease. Frontiers in Bioscience, 4(1): 240-250.
Yang, C., Li, X., Mo, Y., Liu, S., Zhao, L., Ma, X., et al. (2016). β-Asarone mitigates amyloidosis and down regulates RAGE in a transgenic mouse model of Alzheimer’s disease. Cellular and Molecular Neurobiology, 36(1): 121-130.
Yang, Y., Xuan, L., Chen, H., Dai, S., Ji, L., Bao, Y., et al. (2017). Neuroprotective effects and mechanism of β-Asarone against Aβ1–42-induced injury in astrocytes. Evidence-Based Complementary and Alternative Medicine, 17(1): 1-14.
Yang, Y.X., Chen, Y.T., Zhou, X.J., Hong, C.L., Li, C.Y. and Guo, J.Y. (2013). Beta-asarone, a major component of Acorus tatarinowii Schott, attenuates focal cerebral ischemia induced by middle cerebral artery occlusion in rats. BMC Complementary and Alternative Medicine, 13(1): 236.
Yi-zhi, C., Ruo-ming, F., Gang, W., Shuang-feng, L., Yu-feng, H.E., Shu-ying, W., et al. (2004). Effect of volatile oil of Acorus and b-Asarone on Vasomotion and anti-platelet Aggregation in Rats with Hyperlipidemia. Chinese Journal of Integrated Traditional and Western Medicine, 24(1): 16-18.
Zhaorigetu, S., Yang, Z., Toma, I., McCaffrey, T.A. and Hu, C.A. (2011). Apolipoprotein L6, induced in atherosclerotic lesions, promotes apoptosis and blocks Beclin 1-dependent autophagy in atherosclerotic cells. The Journal of Biological Chemistry, 286(31): 27389-27398.
Zou, D.J., Wang, G., Liu, J.C., Dong, M.X., Li, X.M., Zhang, C., et al. (2011). Beta-asarone attenuates beta-amyloid-induced apoptosis through the inhibition of the activation of apoptosis signal-regulating kinase 1 in SH-SY5Y cells. Die Pharmazie, 66(1): 44-51.
_||_
Alderton, W.K., Cooper, C.E. and Knowles, R.G. (2001). Nitric oxide synthases: structure, function and inhibition. Biochemical Journal, 357(3): 593-615.
Alvarez, A., Cacabelos, R., Sanpedro, C., Garcia-Fantini, M. and Aleix-andre, M. (2007). Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiology of Aging, 28(4): 533-536.
Ansari, N. and Khodagholi, F. (2013). Natural products as promising drug candidates for the treatment of Alzheimer’s disease: molecular mechanism aspect. Current Neuropharmacology, 11(4): 414-429.
Bertram, L., Lill, C.M. and Tanzi, R.E. (2010). The genetics of Alzheimer disease: back to the future. Neuron, 68(2): 270-281.
Chang, W. and Teng, J. (2015). β-asarone prevents Aβ25-35-induced inflammatory responses and autophagy in SH-SY5Y cells: down expression Beclin-1, LC3B and up expression Bcl-2. International Journal of Clinical and Experimental Medicine, 8(11): 20658-20663.
Chen, X., Walker, D.G., Schmidt, A.M., Arancio, O., Lue, L.F. and Yan, S.D. (2007). RAGE: a potential target for Abeta-mediated cellular perturbation in Alzheimer’s disease. Current Molecular Medicine, 7(8): 735-742.
Chen, Y.Z., Wang, Q.W., Liang, Y. and Fang, Y.Q. (2007). Protective effects of beta-asarone on cultured rat cortical neurons damage induced by glutamate. Zhong Yao Cai, 30(4): 436-438.
Cho, J., Kim, Y.H., Kong, J.Y., Yang, C.H. and Park, C.G. (2002). Protection of cultured rat cortical neurons from excitotoxicity by asarone, a major essential oil component in the rhizomes of Acorus gramineus. Life Sciences, 71(5): 591-599.
Chun, H.S., Kim, J.M., Choi, E.H. and Chang, N. (2008). Neuroprotective effects of several Korean medicinal plants traditionally used for stroke remedy. Journal of Medical Food, 11(2): 246-251.
Dobarro, M., Orejana, L., Aguirre, N. and Ramírez, M.J. (2013). Propranolol reduces cognitive deficits, amyloid β levels, tau phosphorylation and insulin resistance in response to chronic corticosterone administration. International Journal of Neuropsychopharmacology, 16(6): 1351-1360.
Fan, R., Xu, F., Previti, M.L., Davis, J., Grande, A.M., Robinson, J.K., et al. (2007). Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. Journal of Neuroscience, 27(12): 3057-3063.
Fang, F., Lue, L.F., Yan, S., Xu, H., Luddy, J.S., Chen, D., et al. (2010). RAGE-dependent signaling in microglia contributes to neuroinflammation, Abeta accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. The FASEB Journal, 24(4): 1043-1055.
Fang, Y.Q., Fang, R.M., Fang, G.L., Jiang, Y. and Fu, S.Y. (2008). Effects of beta-asarone on expression of c-fos in kindling epilepsy rat brain. Zhongguo Zhong Yao Za Zhi, 33(5): 534-536.
Fang, Y.Q., Li, L. and Wu, Q.D. (2003). Effects of beta-asarone on gene expression in mouse brain. Zhong Yao Cai, 26(9): 650-652.
Fang, Y.Q. and Wei, G. (2002). To analyze if the Rhizoma Acori Tatarimowii naph-tha can go through the BBB or not with GC-MS. Zhong Yao Xin Yao Yu: Ling Chuang Yao Li, 13(3): 181-182.
Fu, S.Y., Fang, R.M., Fang, G.L., Xie, Y.H. and Fang, Y.Q. (2008). Effects of beta-asarone on expression of FOS and GAD65 in cortex of epileptic rat induced by penicillin. Zhong Yao Cai, 31(1): 79-81.
Geng, Y., Li, C., Liu, J., Xing, G., Zhou, L., Dong, M., et al. (2010). Beta-asarone improves cognitive function by suppressing neuronal apoptosis in the beta-amyloid hippocampus injection rats. Biological and Pharmaceutical Bulletin, 33(5): 836-843.
Han, L., Yin, K., Zhang, S., Wu, Z., Wang, C., Zhang, Q., et al. (2013). Dalesconols B inhibits lipopolysaccharide induced inflammation and suppresses NF-kappaB and p38/JNK activation in microglial cells. Neurochemistry International, 62(7): 913-921.
Huang, L., Deng, M., He, Y. and Fang, Y. (2015). β-asarone and levodopa coadministration protects against 6-OHDA-induced damage in parkinsonian rat mesencephalon by regulting autophagy: down expression Beclin-1 and LC3B and up expression p62. Clinical and Experimental Pharmacology and Physiology, 42(3): 269-277.
Imbimbo, B.P., Lombard, J. and Pomara, N. (2005). Pathophysiology of Alzheimer's disease. Neuroimaging Clinics of North America, 15(4): 727-753.
Jayasooriya, R.G., Kang, C.H., Seo, M.J., Choi, Y.H., Jeong, Y.K. and Kim, G.Y. (2011). Exopolysaccharide of Laetiporus sulphureus var. miniatus down regulates LPS-induced production of NO, PGE(2), and TNF-alpha in BV2 microglia cells via suppression of the NF-kappaB pathway. Food and Chemical Toxicology, 49(11): 2758-2764.
Jean, Y.Y., Baleriola, J., Fà, M., Hengst, U. and Troy, C.M. (2015). Stereotaxic infusion of oligomeric Amyloid-beta into the mouse hippocampus. Journal of Visualized Experiments, 100(6): e52805.
Kang, C.H., Jayasooriya, R.G., Dilshara, M.G., Choi, Y.H., Jeong, Y.K., Kim, N.D., et al. (2012). Caffeine suppresses lipopolysaccharide-stimulated BV2 microglial cells by suppressing Akt-mediated NF-kappaB activation and ERK phosphorylation. Food and Chemical Toxicology, 50(12): 4270-4276.
Klein, R.L., Dayton, R.D., Diaczynsky, C.G. and Wang, D.B. (2010). Pronounced micro gliosis and neurodegeneration in aged rats after tau gene transfer. Neurobiology of Aging, 31(12): 2091-2102.
Lee, B., Sur, B., Cho, S.G., Yeom, M., Shim, I., Lee, H., et al. (2015). Effect of Beta-Asarone on impairment of spatial working memory and apoptosis in the hippocampus of rats exposed to chronic corticosterone administration. Biomolecules and Therapeutics (Seoul), 23(6): 571-581.
Lee, B., Sur, B., Shim, I., Lee, H. and Hahm, D.H. (2014). Baicalin improves chronic corticosterone-induced learning and memory deficits via the enhancement of impaired hippocampal brain-derived neurotrophic factor and cAMP response element-binding protein expression in the rat. Journal of Natural Medicines, 68(1): 132-143.
Li, C., Xing, G., Dong, M., Zhou, L., Li, J., Wang, G., et al. (2010). Beta-asarone protection against beta-amyloid-induced neurotoxicity in PC12 cells via JNK signaling and modulation of Bcl-2 family proteins. European Journal of Pharmacology, 635(1-3): 96-102.
Li, Z., Zhao, G., Qian, S., Yang, Z., Chen, X., Chen, J., et al. (2012). Cerebrovascular protection of beta-asarone in Alzheimer’s disease rats: a behavioral, cerebral blood flow, biochemical and genic study. Journal of Ethnopharmacology, 144(2): 305-312.
Lim, H.W., Kumar, H., Kim, B.W., More, S.V., Kim, I.W., Park, J.I., et al. (2014). β-Asarone (cis-2,4,5-trimethoxy-1-allyl phenyl), attenuates pro-inflammatory mediators by inhibiting NF-κB signaling and the JNK pathway in LPS activated BV-2 microglia cells. Food and Chemical Toxicology, 72(10): 265-272.
Liu, J., Li, C., Xing, G., Zhou, L., Dong, M., Geng, Y., et al. (2010). Beta-asarone attenuates neuronal apoptosis induced by Beta amyloid in rat hippocampus. Yakugaku Zasshi: Journal of the Pharmaceutical Society of Japan, 130(5): 737-746.
Lue, L.F., Walker, D.G., Brachova, L., Beach, T.G., Rogers, J., Schmidt, A.M., et al. (2001). Involvement of microglial receptor for advanced glycation end products (RAGE) in Alzheimer’s disease: identification of a cellular activation mechanism. Experimental Neurology, 171(1): 29-45.
Maltseva, A.V., Bystryakc, S. and Galzitskayad, O.V. (2011). The role of β-amyloid peptide in neurodegenerative diseases. Ageing Research Reviews, 10(4): 440-452.
Ojala, J., Alafuzoff, I., Herukka, S.K., Van Groen, T., Tanila, H. and Pirttilä, T. (2009). Expression of interleukin-18 is increased in the brains of Alzheimer's disease patients. Neurobiology of Aging, 30(2): 198-209.
Olajide, O.A., Bhatia, H.S., De Oliveira, A.C., Wright, C.W. and Fiebich, B.L. (2013). Antineuroinflammatory properties of synthetic cryptolepine in human neuroblastoma cells: possible involvement of NF-kappaB and p38 MAPK inhibition. European Journal of Medicinal Chemistry, 63(5): 333-339.
Paxinos, G. and Watson, C. (1998). The Rat Brain in Stereotaxic Coordinates. 4th ed., San Diego: Academic Press, pp: 45-46.
Pettigrew, L.C., Kindy, M.S., Scheff, S., Springer, J.E., Kryscio, R.J., Li, Y., et al. (2008). Focal cerebral ischemia in the TNFalpha-transgenic rat. Journal of Neuroinflammation, 5: 47.
Qaseem, A., Snow, V., Cross, J.T.J.r., Forciea, M.A., Hopkins, R.J.r., Shekelle, P., et al. (2008). Current Pharmacologic Treatment of Dementia: A Clinical Practice Guideline from the American College of Physicians and the American Academy of Family Physicians. Annal of Internal Medicine, 148(5): 370–378.
Qiduan, W.U., Qinghe, W.U., Qiwen, W. and Yuzhi, C. (2008). Study on anti-thrombosis effect of volatile oil of Acorus Tatarinowii Schott and b-asarone. Traditional Chinese Drug Research and Clinical Pharmacology, 19(1): 29-31.
Roozendaal, B., Hahn, E.L., Nathan, S.V., De Quervain, D.J. and McGaugh, J.L. (2004). Glucocorticoid effects on memory retrieval require concurrent noradrenergic activity in the hippocampus and basolateral amygdala. Journal of Neuroscience, 24(37): 8161-8169.
Saura, C.A. and Valero, J. (2011). The role of CREB signaling in Alzheimer’s disease and other cognitive disorders. Nature Reviews Neuroscience, 22(2): 153-169.
Thies, W. and Bleiler, L. (2012). Alzheimer’s disease facts and figures. Alzheimer's and Dementia, 8(2): 131-168.
Vaynman, S., Ying, Z. and Gomez-Pinilla, F. (2008). Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience, 122(3): 647-657.
Wang, D.B., Dayton, R.D., Zweig, R.M. and Klein, R.L. (2010). Transcriptome analysis of a tau overexpression model in rats implicates an early pro-inflammatory response. Experimental Neurology, 224(1): 197-206.
Wei, G., Chen, Y.B., Chen, D.F., Lai, X.P., Liu, D.H., Deng, R.D., et al. (2013). Beta Asarone inhibits neuronal apoptosis via the CaMKII/CREB/Bcl-2 signaling pathway in an in vitro model and AbetaPP/PS1 mice. Journal of Alzheimer’s Disease, 33(3): 863-880.
Willians, C.M., El Mohsen, M.A., Vauzour, D., Rendeiro, C., Butler, L.T., Ellis, J.A., et al. (2008). Blueberry-induced changes in spatial working memory correlate with changes in hippocampal CREB phosphorylation and brain-derived neurotrophic factor (BDNF) levels. Free Radical Biology and Medicine, 45(3): 295-305.
Yan, S.S., Chen, D., Yan, S., Guo, L., Du, H. and Chen, J.X. (2012). RAGE is a key cellular target for Abeta-induced perturbation in Alzheimer’s disease. Frontiers in Bioscience, 4(1): 240-250.
Yang, C., Li, X., Mo, Y., Liu, S., Zhao, L., Ma, X., et al. (2016). β-Asarone mitigates amyloidosis and down regulates RAGE in a transgenic mouse model of Alzheimer’s disease. Cellular and Molecular Neurobiology, 36(1): 121-130.
Yang, Y., Xuan, L., Chen, H., Dai, S., Ji, L., Bao, Y., et al. (2017). Neuroprotective effects and mechanism of β-Asarone against Aβ1–42-induced injury in astrocytes. Evidence-Based Complementary and Alternative Medicine, 17(1): 1-14.
Yang, Y.X., Chen, Y.T., Zhou, X.J., Hong, C.L., Li, C.Y. and Guo, J.Y. (2013). Beta-asarone, a major component of Acorus tatarinowii Schott, attenuates focal cerebral ischemia induced by middle cerebral artery occlusion in rats. BMC Complementary and Alternative Medicine, 13(1): 236.
Yi-zhi, C., Ruo-ming, F., Gang, W., Shuang-feng, L., Yu-feng, H.E., Shu-ying, W., et al. (2004). Effect of volatile oil of Acorus and b-Asarone on Vasomotion and anti-platelet Aggregation in Rats with Hyperlipidemia. Chinese Journal of Integrated Traditional and Western Medicine, 24(1): 16-18.
Zhaorigetu, S., Yang, Z., Toma, I., McCaffrey, T.A. and Hu, C.A. (2011). Apolipoprotein L6, induced in atherosclerotic lesions, promotes apoptosis and blocks Beclin 1-dependent autophagy in atherosclerotic cells. The Journal of Biological Chemistry, 286(31): 27389-27398.
Zou, D.J., Wang, G., Liu, J.C., Dong, M.X., Li, X.M., Zhang, C., et al. (2011). Beta-asarone attenuates beta-amyloid-induced apoptosis through the inhibition of the activation of apoptosis signal-regulating kinase 1 in SH-SY5Y cells. Die Pharmazie, 66(1): 44-51.