Effect of fenugreek (Trigonella foenum graecum L.) ethanolic extract on carbon tetrachloride-induced hepatotoxicity in rats
Subject Areas :
Veterinary Clinical Pathology
Fatemeh Shirinabadi Farahani
1
,
Akram Eidi
2
*
,
Pejman Mortazavi
3
,
Ali Haeri Rohani
4
1 - MSc of Animal Physiology, Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 - Professor, Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
3 - - Associate Professor, Department of Pathobiology, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
4 - Professor, Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Received: 2017-10-01
Accepted : 2019-06-26
Published : 2020-04-20
Keywords:
liver,
Rat,
Carbon tetrachloride,
Detoxification,
Fenugreek (Trigonella foenum graecum),
Abstract :
Fenugreek (Trigonella foenum graecum)has long been considered in traditional medicine due to its botanical and medicinal properties. The aim of this study was to evaluate the protective effect of fenugreek seed extract against carbon tetrachloride (CCl4)-induced hepatic toxicity in rats. A total of 48 male Wistar rats were randomly divided into eight groups. The normal control group was intact. The liver-injury control group received intraperitoneal injection of 50% CCl4 (1 ml/kg) twice a week for a total of 10 times. Normal experimental groups received fenugreek extract (50, 100 and 200 mg/kg intragastrically). Liver-injury experimental groups were administrated fenugreek extract (3 doses as above) along with CCl4. The rats were sacrificed on the 34th day, blood was withdrawn by cardiac puncture and the levels of ALT, AST, ALP, and GGT were measured. Administration of CCl4 significantly increased the levels of liver enzymes in the liver-injury control group in comparison to normal control (p < /em><0.001). Administration of fenugreek extract showed a significant tendency towards normalization of all measured biochemical parameters in CCl4-treated rats. These results demonstrate that fenugreek extract exerts protective effects against CCl4-induced damage in rat liver, and supports a potential therapeutic use of fenugreek as an alternative for patients with liver diseases.
References:
Ahmadiani, A., Javan, M., Semnanian, S., Barat, E. and Kamalinejad M. (2001). Anti-inflammatory and antipyretic effects of Trigonella foenum-graecum leaves extract in the rat. Journal of Ethnopharmacology, 75(2-3): 283-286.
Arafa, M.H., Mohammad, N.S. and Atteia, H.H. (2014). Fenugreek seed powder mitigates cadmium-induced testicular damage and hepatotoxicity in male rats. Experimental Toxicology Pathology, 66(7): 293-300.
Belguith-Hadriche, O., Bouaziz, M., Jamoussi, K., El Feki, A., Sayadi, S. and Makni-Ayedi, F. (2010). Lipid-lowering and antioxidant effects of an ethyl acetate extract of fenugreek seeds in high-cholesterol-fed rats. Journal of Agricultural and Food Chemistry, 58(2): 2116-2122.
Bhatia, K., Kaur, M., Atif, F., Ali M., Rehman, H., Rahman, S., et al. (2006). Aqueous extract of trigonella foenum graecum L. ameliorates additive urotoxicity of buthionine sulfoximine and cyclophosphamide in mice. Food and Chemical Toxicology, 44(10): 1744-1750.
Devasena, T. and Menon, P.V. (2007). Fenugreek seeds modulate 1,2-dimethylhydrazine-induced hepatic oxidative stress during colon carcinogenesis. Italian Journal Biochemistry, 56(1): 28-34.
Dini, M. (2006). Scientific name of medicinal plants used in traditional medicine. Iindia: Forest and Rangeland Research Institute Publication, pp: 299-300.
Eidi, A., Mortazavi, P., Moghadam, J.Z. and Mardani, P.M. (2015). Hepatoprotective effects of Portulaca oleracea extract against CCl4-induced damage in rats. Pharmaceutical Biology, 53(7): 1042-1051.
Hamden, K., Keskes, H., Elgomdi, O., Feki, A. and Alouche, N. (2017). Modulatory effect of an isolated triglyceride from fenugreek seed oil on of α-amylase, lipase and ACE activities, liver-kidney functions and metabolic disorders of diabetic rats. Journal of Oleo Science, 66(6): 633-645.
Jain, S.C. and Madhu, A. (1988). Regulation of trigonellin in Trigonella species by chemical mutagenic treatments. Indian Drugs, 26(1): 14-16.
Kamal, R. and Yadav, R. (1991). Flavonoids from Trigonella polycerta in-vivo and in-vitro. Journal of Phytological Research, 4(2): 161-165.
Khaki, A.A., Khaki, A., Nouri, M., Ahmadi-Ashtiani H.R., Rastegar, H., Rezazadeh, Sh., et al. (2009). Evaluation effects of quercetin on liver apoptosis in streptozotocin induced diabetic rat. Journal of Medicinal Plants, 8(5): 70-78. [In Persian]
Kumar, P., Bhandari, U. and Jamadagni, S. (2014). Fenugreek seed extract inhibit fat accumulation and ameliorates dyslipidemia in high fat diet-induced obese rats. Biomed Research International, 2014: 606021.
Liu, Y., Kakani, R. and Nair, M.G. (2012). Compounds in functional food fenugreek spice exhibit anti-inflammatory and antioxidant activities. Food Chemistry, 131(4): 1187-1192.
Meera, R., Devi, P., Kameswari, B., Madhumitha, B. and Merlin, N.J. (2009). Antioxidant and hepatoprotective activities of Ocimum basilicum Linn. and Trigonella foenum-graecum Linn. against H2O2 and CCL4 induced hepatotoxicity in goat liver. Indian Journal of Experimental Biology, 47(7): 584-590.
Neveen, H., Abou, E.l., Khalil, M., Hussein, J., Oraby, F. and Farrag, A. (2007). Antidiabetic effects of fenugreek alkaliod extract in streptozotocin induced hyperglycemic rats. Journal of Applied Sciences Research, 3(10): 1073-1083.
Odewumi, C., Latinwo L.M., Lyles R.L., Badisa, V.L.D., Ahkinyala, C.A. and Kent-First, M. (2018). Comparative whole genome transcriptome analysis and fenugreek leaf extract modulation on cadmium-induced toxicity in liver cells. International Journal of Molecular Medicine, 42(2): 735-744.
Palmes, D. and Spiegel, H.U. (2004). Animal models of liver regeneration. Biomaterials, 25(9): 1601-1611.
Rafiee, F., Heidari, R., Ashraf, H. and Rafiee, P. (2013). Protective Effect of Berberis Integerrima Fruit Extract on Carbon-Tetrachloride Induced Hepatotoxicity in Rats. Journal of Fars University of Medical Sciences, 3(3): 179-187.
Roghani, M., Mahdavi, M., Khalili, M., Ansari, F. and Yadgari, S. (2000). Evaluation analgesic hydroalcoholic extract of fenugreek in male diabetic rats. Medicinal Plants, 32(7): 8-12.
Rosenkranz, G.K. (2009). Modeling laboratory data from clinical trials. Processing in Applied Mathematics and Mechanics, 53(3): 812-819.
Sallie, R., Michael Tredger, J. and Williams R. (1991). Drugs and the liver part 1: testing liver function. Biopharmaceutics and Drug Disposition, 12(4): 251-259.
Shabbeer, S., Sobolewski, M., Anchoori, R.K., Kachhap, S. and Hidalgo, M. (2009). A naturally occurring edible spice as an anticancer agent. Cancer Biology and Therapy, 8(3): 272-278.
Shrestha, N., Chand, L., Han, M.K., Lee, S.O., Kim, C.Y. and Jeong, Y.J. (2016). Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes. Food and Chemical Toxicology, 93(7): 129-137.
Srinivasan, K. (2006). Fenugreek (Trigonella foenum-graecum): a review of health beneficial physiological effects. Food Reviews International, 22(2): 203-224.
Suzek, H., Celik, I., Dogan, A. and Yildirim, S. (2016). Protective effect and antioxidant role of sweetgum (Liquidambar orientalis) oil against carbon tetrachloride-induced hepatotoxicity and oxidative stress in rats. Journal of Pharmaceutical Biology, 54(3), 451-457.
Swain, A.R., Dutton, S.P. and Truswell, A.S. (1985). Salicylates in foods. Journalof theAmerican Dietetic Association, 85(8): 950-960.
Varshney, I.P. and Sharma, S.C. (1996). Saponins XXXII Trigonella foenum graecum seeds. Journal of the Indian Chemistry Society, 43(8): 564-567.
Yachi, R., Igarashi, O. and Kiyose, C. (2010). Protective effects of vitamin E analogs against carbon tetracholoride-induced fatty liver in rats. Journal of Clinical Biochemistry and Nutrition, 47(2): 148-154.
Yadav, M., Lavania, A., Tomar, R., Prasad, G.B., Jain, S. and Yadav, H. (2010). Complementary and comparative study on hypoglycemic and antihyperglycemic activity of various extracts of Eugenia jambolana seed, Momordica charantia fruits, Gymnema sylvestre, and Trigonella foenum graecum seeds in rats. Applied Biochemistry and Biotechnology, 160(8): 2388-2400.
_||_
Ahmadiani, A., Javan, M., Semnanian, S., Barat, E. and Kamalinejad M. (2001). Anti-inflammatory and antipyretic effects of Trigonella foenum-graecum leaves extract in the rat. Journal of Ethnopharmacology, 75(2-3): 283-286.
Arafa, M.H., Mohammad, N.S. and Atteia, H.H. (2014). Fenugreek seed powder mitigates cadmium-induced testicular damage and hepatotoxicity in male rats. Experimental Toxicology Pathology, 66(7): 293-300.
Belguith-Hadriche, O., Bouaziz, M., Jamoussi, K., El Feki, A., Sayadi, S. and Makni-Ayedi, F. (2010). Lipid-lowering and antioxidant effects of an ethyl acetate extract of fenugreek seeds in high-cholesterol-fed rats. Journal of Agricultural and Food Chemistry, 58(2): 2116-2122.
Bhatia, K., Kaur, M., Atif, F., Ali M., Rehman, H., Rahman, S., et al. (2006). Aqueous extract of trigonella foenum graecum L. ameliorates additive urotoxicity of buthionine sulfoximine and cyclophosphamide in mice. Food and Chemical Toxicology, 44(10): 1744-1750.
Devasena, T. and Menon, P.V. (2007). Fenugreek seeds modulate 1,2-dimethylhydrazine-induced hepatic oxidative stress during colon carcinogenesis. Italian Journal Biochemistry, 56(1): 28-34.
Dini, M. (2006). Scientific name of medicinal plants used in traditional medicine. Iindia: Forest and Rangeland Research Institute Publication, pp: 299-300.
Eidi, A., Mortazavi, P., Moghadam, J.Z. and Mardani, P.M. (2015). Hepatoprotective effects of Portulaca oleracea extract against CCl4-induced damage in rats. Pharmaceutical Biology, 53(7): 1042-1051.
Hamden, K., Keskes, H., Elgomdi, O., Feki, A. and Alouche, N. (2017). Modulatory effect of an isolated triglyceride from fenugreek seed oil on of α-amylase, lipase and ACE activities, liver-kidney functions and metabolic disorders of diabetic rats. Journal of Oleo Science, 66(6): 633-645.
Jain, S.C. and Madhu, A. (1988). Regulation of trigonellin in Trigonella species by chemical mutagenic treatments. Indian Drugs, 26(1): 14-16.
Kamal, R. and Yadav, R. (1991). Flavonoids from Trigonella polycerta in-vivo and in-vitro. Journal of Phytological Research, 4(2): 161-165.
Khaki, A.A., Khaki, A., Nouri, M., Ahmadi-Ashtiani H.R., Rastegar, H., Rezazadeh, Sh., et al. (2009). Evaluation effects of quercetin on liver apoptosis in streptozotocin induced diabetic rat. Journal of Medicinal Plants, 8(5): 70-78. [In Persian]
Kumar, P., Bhandari, U. and Jamadagni, S. (2014). Fenugreek seed extract inhibit fat accumulation and ameliorates dyslipidemia in high fat diet-induced obese rats. Biomed Research International, 2014: 606021.
Liu, Y., Kakani, R. and Nair, M.G. (2012). Compounds in functional food fenugreek spice exhibit anti-inflammatory and antioxidant activities. Food Chemistry, 131(4): 1187-1192.
Meera, R., Devi, P., Kameswari, B., Madhumitha, B. and Merlin, N.J. (2009). Antioxidant and hepatoprotective activities of Ocimum basilicum Linn. and Trigonella foenum-graecum Linn. against H2O2 and CCL4 induced hepatotoxicity in goat liver. Indian Journal of Experimental Biology, 47(7): 584-590.
Neveen, H., Abou, E.l., Khalil, M., Hussein, J., Oraby, F. and Farrag, A. (2007). Antidiabetic effects of fenugreek alkaliod extract in streptozotocin induced hyperglycemic rats. Journal of Applied Sciences Research, 3(10): 1073-1083.
Odewumi, C., Latinwo L.M., Lyles R.L., Badisa, V.L.D., Ahkinyala, C.A. and Kent-First, M. (2018). Comparative whole genome transcriptome analysis and fenugreek leaf extract modulation on cadmium-induced toxicity in liver cells. International Journal of Molecular Medicine, 42(2): 735-744.
Palmes, D. and Spiegel, H.U. (2004). Animal models of liver regeneration. Biomaterials, 25(9): 1601-1611.
Rafiee, F., Heidari, R., Ashraf, H. and Rafiee, P. (2013). Protective Effect of Berberis Integerrima Fruit Extract on Carbon-Tetrachloride Induced Hepatotoxicity in Rats. Journal of Fars University of Medical Sciences, 3(3): 179-187.
Roghani, M., Mahdavi, M., Khalili, M., Ansari, F. and Yadgari, S. (2000). Evaluation analgesic hydroalcoholic extract of fenugreek in male diabetic rats. Medicinal Plants, 32(7): 8-12.
Rosenkranz, G.K. (2009). Modeling laboratory data from clinical trials. Processing in Applied Mathematics and Mechanics, 53(3): 812-819.
Sallie, R., Michael Tredger, J. and Williams R. (1991). Drugs and the liver part 1: testing liver function. Biopharmaceutics and Drug Disposition, 12(4): 251-259.
Shabbeer, S., Sobolewski, M., Anchoori, R.K., Kachhap, S. and Hidalgo, M. (2009). A naturally occurring edible spice as an anticancer agent. Cancer Biology and Therapy, 8(3): 272-278.
Shrestha, N., Chand, L., Han, M.K., Lee, S.O., Kim, C.Y. and Jeong, Y.J. (2016). Glutamine inhibits CCl4 induced liver fibrosis in mice and TGF-β1 mediated epithelial-mesenchymal transition in mouse hepatocytes. Food and Chemical Toxicology, 93(7): 129-137.
Srinivasan, K. (2006). Fenugreek (Trigonella foenum-graecum): a review of health beneficial physiological effects. Food Reviews International, 22(2): 203-224.
Suzek, H., Celik, I., Dogan, A. and Yildirim, S. (2016). Protective effect and antioxidant role of sweetgum (Liquidambar orientalis) oil against carbon tetrachloride-induced hepatotoxicity and oxidative stress in rats. Journal of Pharmaceutical Biology, 54(3), 451-457.
Swain, A.R., Dutton, S.P. and Truswell, A.S. (1985). Salicylates in foods. Journalof theAmerican Dietetic Association, 85(8): 950-960.
Varshney, I.P. and Sharma, S.C. (1996). Saponins XXXII Trigonella foenum graecum seeds. Journal of the Indian Chemistry Society, 43(8): 564-567.
Yachi, R., Igarashi, O. and Kiyose, C. (2010). Protective effects of vitamin E analogs against carbon tetracholoride-induced fatty liver in rats. Journal of Clinical Biochemistry and Nutrition, 47(2): 148-154.
Yadav, M., Lavania, A., Tomar, R., Prasad, G.B., Jain, S. and Yadav, H. (2010). Complementary and comparative study on hypoglycemic and antihyperglycemic activity of various extracts of Eugenia jambolana seed, Momordica charantia fruits, Gymnema sylvestre, and Trigonella foenum graecum seeds in rats. Applied Biochemistry and Biotechnology, 160(8): 2388-2400.