Histopathological study of gill in common carp (Cyprinus carpio) and goldfish (Carassius auratus) during exposure to lethal concentrations of nano-zinc oxide, nano copper oxide and nano titanium dioxide
Subject Areas :
Veterinary Clinical Pathology
Aliakbar Hedayati
1
,
Fatemeh Darabitabar
2
,
hassan rezaei
3
1 - Associate Professor, Department of Aquatic Production and Exploitation, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
2 - PhD Student, Department of Fisheries, Faculty of Marine Natural Resources, Khoramshahr Marine Science and Technology University, Khuzestan, Iran.
3 - Assistant Professor, Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
Received: 2017-02-05
Accepted : 2017-07-30
Published : 2017-06-22
Keywords:
Common carp,
Goldfish,
Nano-zinc oxide,
Nano copper oxide,
Nano titanium dioxide,
Abstract :
Apart from skin, gills are the first place of direct exposure of fish to toxins or pollutants therefore study of changes in gill structure is a suitable indicator of toxins or pollutants under stressful conditions. The aim of this study was to investigate pathological alterations of gill tissue in common carp during exposure to different nanoparticles. For this study, 210 fry common carp with a total length of 7.36±0.30 cm and goldfish with a total length of 6.50±0.43 cm in 6 treatments with 3 replicates in each treatment were placed in 60 liter aquariums in groups of 11 individuals. Gill tissue samples of common carp and goldfish were taken 7 days after exposure to 50% lethal concentration of nano-zinc oxide, nano copper oxide and titanium dioxide nanoparticles. Histological changes were evident in samples exposed to nano-zinc oxide, nano copper oxide and titanium dioxide nanoparticles while no detectable changes were observed in control gill. The symptoms observed in both fish consisted of gill hyperplasia, adhesion of secondary lamellae, increased levels of mucus and hyperemia. The most common complication observed was gill hyperplasia and an increase in the amount of mucus. The results of this study indicate that 50% lethal concentration of nanoparticles of titanium, copper and zinc can cause tissue damage and destruction. Also, sub-lethal toxicity of nano-zinc oxide is higher than nano copper oxide and nano titanium dioxide and causes much wider effects on gill tissue of common carp and goldfish.
References:
Alazemi, B.M., Lewis, J.W. and Andrews, E.B. (1996). Gill damage in the freshwater fish Gnathonemus petersii (family: Mormyridae) exposed to selected pollutants: an ultrastructural study. Environmental Technology, 17: 225-238.
Bais, U.E. and Lokhande, M.V. (2012). Effect of cadmium chloride on histopathological changes in the freshwater fish Ophiocephalus striatus (Channa). International Journal of Zoology Research, 8(1): 23-32.
Camargo, M.M.P. and Martinez, C.B.R. (2007). Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. Neotropical Ichthyology, 5(3): 327-336.
Cengiz, E.I. and Unlu, E. (2006). Sublethal effects of commercial deltamethrin on the structure of the gill, liver and gut tissues of mosquitofish Gambusia affinis, A microscopic study. Environmental Toxicology and Pharmacology, 21(3): 246-253.
Chang, Ya., Xia, L., Zhang, M., Zhang, J. and Xing, G. (2012). The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles. Materials, 5(12): 2850-2871.
Farkas, J., Christian, P., Gallego-Urrea, J.A., Roos, N., Hassellov, M., Tollefsen, K.E., et al. (2011). Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquatic Toxicology, 101: 117-125.
Griffitt, R.J., Hyndman, K., Denslow, N.D. and Barber, D.S. (2010). Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicology sciences, 107: 404-415.
Hao, L., Wang, Z. and Xing, B. (2009). Effect of sub-acute exposure to TiO nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). Journal of Environmental Sciences, 21(10): 1459-1466.
Herre Dasht, M. and Mirvaghefi, A.R. (2013). Applications of nanotechnology in fisheries. Journal of Nanotechnology, 11(6): 13-15.
Hinton, D.E. and Laurén, D.J. (1990). Liver structural alterations accompanying chronic toxicity in fishes: potentioal biomarkers of exposure. In: Biomarkers of Environmental Contamination. McCarthy, J.F. and Shugart, L.R. editors. Boca Raton, Lewis Publishers, pp: 51-65.
Razmara, P., Dorafshan, S., Peykan Heyrati, F., Talebi, M. and Ranjbar, M. (2014). Effect of water-born colloidal silver nanoparticles and silver nitrate on gill histopathology of Rainbow catfish, Pangasianodon hypophthalmus. Journal of Aquatic Ecology, 3(3): 18-10.
Revell, P.A. (2006). The biological effects of nanoparticles.Nanotechnology Perceptions, 2: 283-298.
Roberts, R.J. (1989). Fish Pathology. 2nd ed., UK: London, Balliere Tindall, pp: 21.
Shi, J.W., Zhang, F., Zhao, Y.L. and Chai, Z.F. (2006). Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicology Letters, 161(2): 115-123.
Sweety, R.R., Sajwan, K.S. and Kumar, K.S. (2007). Influence of zinc on cadmium induced hematologicaland biochemical responses in freshwater teleost fish Catlacatla. Fish Physiology and Biochemistry, 34(2): 169-174.
Takashima, F. and Hibya, T. (1995). An atlas of fish histology: normal and pathological features, 2nd ed., Verlag GmbH & Co. pp: 195.
Tolstoshev, A. (2006). Nanotechnology, Assessing the Environmental Risks for Australia. 1st ed., Earth Policy Centre, pp: 317.
_||_
Alazemi, B.M., Lewis, J.W. and Andrews, E.B. (1996). Gill damage in the freshwater fish Gnathonemus petersii (family: Mormyridae) exposed to selected pollutants: an ultrastructural study. Environmental Technology, 17: 225-238.
Bais, U.E. and Lokhande, M.V. (2012). Effect of cadmium chloride on histopathological changes in the freshwater fish Ophiocephalus striatus (Channa). International Journal of Zoology Research, 8(1): 23-32.
Camargo, M.M.P. and Martinez, C.B.R. (2007). Histopathology of gills, kidney and liver of a Neotropical fish caged in an urban stream. Neotropical Ichthyology, 5(3): 327-336.
Cengiz, E.I. and Unlu, E. (2006). Sublethal effects of commercial deltamethrin on the structure of the gill, liver and gut tissues of mosquitofish Gambusia affinis, A microscopic study. Environmental Toxicology and Pharmacology, 21(3): 246-253.
Chang, Ya., Xia, L., Zhang, M., Zhang, J. and Xing, G. (2012). The Toxic Effects and Mechanisms of CuO and ZnO Nanoparticles. Materials, 5(12): 2850-2871.
Farkas, J., Christian, P., Gallego-Urrea, J.A., Roos, N., Hassellov, M., Tollefsen, K.E., et al. (2011). Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquatic Toxicology, 101: 117-125.
Griffitt, R.J., Hyndman, K., Denslow, N.D. and Barber, D.S. (2010). Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicology sciences, 107: 404-415.
Hao, L., Wang, Z. and Xing, B. (2009). Effect of sub-acute exposure to TiO nanoparticles on oxidative stress and histopathological changes in Juvenile Carp (Cyprinus carpio). Journal of Environmental Sciences, 21(10): 1459-1466.
Herre Dasht, M. and Mirvaghefi, A.R. (2013). Applications of nanotechnology in fisheries. Journal of Nanotechnology, 11(6): 13-15.
Hinton, D.E. and Laurén, D.J. (1990). Liver structural alterations accompanying chronic toxicity in fishes: potentioal biomarkers of exposure. In: Biomarkers of Environmental Contamination. McCarthy, J.F. and Shugart, L.R. editors. Boca Raton, Lewis Publishers, pp: 51-65.
Razmara, P., Dorafshan, S., Peykan Heyrati, F., Talebi, M. and Ranjbar, M. (2014). Effect of water-born colloidal silver nanoparticles and silver nitrate on gill histopathology of Rainbow catfish, Pangasianodon hypophthalmus. Journal of Aquatic Ecology, 3(3): 18-10.
Revell, P.A. (2006). The biological effects of nanoparticles.Nanotechnology Perceptions, 2: 283-298.
Roberts, R.J. (1989). Fish Pathology. 2nd ed., UK: London, Balliere Tindall, pp: 21.
Shi, J.W., Zhang, F., Zhao, Y.L. and Chai, Z.F. (2006). Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice. Toxicology Letters, 161(2): 115-123.
Sweety, R.R., Sajwan, K.S. and Kumar, K.S. (2007). Influence of zinc on cadmium induced hematologicaland biochemical responses in freshwater teleost fish Catlacatla. Fish Physiology and Biochemistry, 34(2): 169-174.
Takashima, F. and Hibya, T. (1995). An atlas of fish histology: normal and pathological features, 2nd ed., Verlag GmbH & Co. pp: 195.
Tolstoshev, A. (2006). Nanotechnology, Assessing the Environmental Risks for Australia. 1st ed., Earth Policy Centre, pp: 317.