Urban Bus Stop Site Selection using Multi-Layer Perceptron Neural Network and Error Back-Propagation Algorithm (Case Study: Kermanshah City)
Subject Areas :
Milad Bagheri
1
,
Shahab Moradi
2
,
Meysam Argany
3
1 - MSc Student of RS & GIS, Faculty of Geography, University of Tehran
2 - MSc Student of RS & GIS, Faculty of Geography, University of Tehran
3 - Rs & GIS Department, Faculty of Geography, University of Tehran
Received: 2018-02-06
Accepted : 2019-03-20
Published : 2019-04-21
Keywords:
Neural network,
Site Selection,
Kermanshah,
MLP,
Bus station,
Abstract :
Transportation has always been one of the most important factors, which affects the structure of cities. However, the development of a variety of motor vehicles and ever-increasing population changes, especially in the last century, have become one of the main urbanization problems. Considering the volume of inland traffic in Kermanshah City, the standard site selection of bus stations is one of the most important parameters that improves the proper operation of public transportation in the stations. This includes the reducing of Get-of and the Get-in time of the users as well as making less traffic jam of other vehicles. In this study, the multi-layer perceptron with the error-back propagation algorithm as one of the most important structures of the neural networks is used. Afterward, 15 map layers were used as the effective data to select bus station locations. In addition, 500 layers were prepared as network teaching points and 10 intermediate layers were determined. Then, the optimized site zones were obtained by implementing a network of susceptible zones. Eventually, the stations were able to be constructed by identifying the passages in the susceptible zones. It was also observed that susceptible passages are located near demographic, downtown, cultural and commercial centers.
References:
وارثی حمیدرضا؛ شیران غلامرضا، (1394). مکان یابی ایستگاه های اتوبوس با مدل ANP و منطق فازی در GIS (مطالعه موردی: شهرخرم آباد). پژوهش و برنامه ریزی شهری، 23(6)، 55-76.
تقوی گودرزی سعید؛ امیدزاده هانیه، (1393). پیش بینی سرمای دیررس بهاره با استفاده از شبکهی عصبی پرسپترون چند لایه (MLP) و تاثیر آن در حمل و نقل شهر خرم آباد. فصل نامه آمایش محیط، 28، 111-124.
شفیعی فاطمه؛ موسوی میر کلائی سید محمدرضا، عابدی علیاصغر، (1394). کاهش اثر در تداخل سامانه ناوبری GPS با استفاده از شبکه عصبی چند لایه. رایانش نرم و فناوری اطلاعات، 3(4)، 109-117.
نتایج سرشماری عمومی نفوس و مسکن. درگاه ملی آمار. بازبینی شده در 2 بهمن 1389.
روزنامه باختر: حاشیه نشینی زخمی عمیق بر پیکره کرمانشاه ایجاد کرده است، نوشته شده در 20 مهر 1396؛ بازدید در 26 مهر 1396.
6. Clark, C. (1957), “Transport: maker and breaker of cities”, town planning review, No. 28, PP. 237-250.
7. Coulibaly P., anctil F., Aravena R. & Bobee, B.2001. Artificial neural networks modeling of water table depthfluctuations. Water resources research, 37(4): 885-896.
8. Díaz-Álvarez, A., Clavijo, M., Jiménez, F., Talavera, E., Serradilla, F. (2018). Modelling the human lane-change execution behaviour through Multilayer Perceptrons and Convolutional Neural Networks. Transportation Research, 56, 134-148.
9. Díaz-Álvarez, A., Serradilla, F., Naranjo, J. E., Anaya, J. J., & Jiménez, F. (2014). Modeling the driving behavior of electric vehicles using smartphones andneural networks. IEEE Intelligent Transportation Systems Magazine.
10. Gomez, H., Kavzoglu, T. and Mather, P. 2002. Artificial neural network application in landslide hazard zonation in the VenezuelanAndes. Abstracts of 15th International Conference on Geomorphology, Tokyo, Japan, 23-28.
11. Kisi, O. 2005. Daily river flow forecasting using artificial neural networks and autoregressive models. Turkish Journal of Engineering Environmental Science, 29: 9-20.
12. Noori, R., Karbassi, A., Mehdizadeh, H., Vasali-Naseh, M. and Sabahi, M.S. (2011). A Framework Development for Predicting the Longitudinal Dispersion Coefficient in Natural Streams using an Neural Network, Environmental Progress and Sustainable Energy 3, 439- 447.
13. Ogden, K. W. (2017): Urban goods movement: a guide to policy and planning, Routledge, London.
14. Jalili Ghazi Zade, M. and Noori, R. 2008. Prediction of Municipal Solid Waste Generation by Use of Artificial Neural Network: A Case Study of Mashhad. Int. J. Environ. Res 2 (1), 13-22.
15. Hunter, A., L. Kennedy, J.Henry, I. Ferguson, 2000, Application of Neural Networks and Sensitivity Analysis to Improved Prediction of Trauma Survival, Computer Methods and Programs in Biomedicine, No. 62, PP. 11–19.
_||_