• OpenAccess
    • List of Articles Javad Kiani

      • Open Access Article

        1 - Hazard Identification and Risk Analysis in the Light of Process Safety Management in Mobarakeh Steel Company (Case study: Oxygen and Hydrogen Unit)
        Hanieh Nikoomaram Hossein Modaresifar Javad Kiani Mohammad Dehbozorgi
        Background and Objective: The steel industry is one of the most hazardous process industries due to the nature of metal melting and high heat, gases and hazardous chemicals. The high potential of process incidents with consequences such as fire, explosion and release of More
        Background and Objective: The steel industry is one of the most hazardous process industries due to the nature of metal melting and high heat, gases and hazardous chemicals. The high potential of process incidents with consequences such as fire, explosion and release of toxic substances in the mentioned industry emphasizes the importance of hazard identification as the first step in process safety risk management. In the present research, to provide the necessary infrastructure, including a written methodology for hazard identification and risk analysis studies as one of the most vital requirements of Process Safety Management (PSM) and in line with PSM implementation in Mobarakeh Steel Company, the relevant procedure was developed and to ensure its applicability, process safety hazards and their associated incidents in one of the most hazardous units (oxygen and hydrogen unit) were identified and analyzed using the aforementioned procedure. Material and Methodology: The “hazard identification and process safety risk analysis” procedure was developed in accordance with the requirements of process safety management expatiated in PSM best practices and other relevant technical documents. The procedure includes hazard identification (HAZID) worksheet, guide words, levels of probability of occurrence and severity of consequences, risk matrix, implementation methodology, etc. In order to conduct the HAZID study in the oxygen and hydrogen unit, a team including experts and experienced engineers in their relevant job fields was formed, and after preparing the necessary arrangements such as reviewing the documents, HAZID meetings were held according to the developed methodology, the worksheets were completed and analyzed as per the study nodes and relevant corrective measures were also suggested. Findings: From the total of 40 process safety incidents identified in the oxygen and hydrogen unit, 5% had a low-risk level, 65% had a medium-risk level, 15% had a high-risk level and 15% had an extreme-risk level. Therefore, the majority of the identified process safety risks had a medium (tolerable) risk level. Major Process Incidents (MPIs) with high (unacceptable) and extreme (intolerable) risk levels also constitute 30% of all incidents. The plants of the oxygen unit had the most process incidents in terms of the number, and gas and liquid tanks had the highest risk level of process safety incidents. In total, 12 MPIs with high and extreme risk levels were identified. Discussion and Conclusion: One of the key achievements of the research is the development of the “hazard identification and process safety risk analysis” procedure in Mobarakeh Steel Company to identify and analyze the process safety incidents and other related characteristics such as the causes and consequences of incidents, prevention and mitigation controls, the probability of occurrence and severity of consequences, risk level, etc. Also, the aforesaid procedure would help deliver a coherent methodology for assessing process safety risks, provide a suitable platform for adopting corrective measures for major risks, conduct supplementary studies, and develop and implement other mechanisms required to meet PSM requirements. Manuscript profile