Effect of time management and foliar spraying levels of potassium nanoparticles on quantitative and qualitative traits of fennel
Subject Areas : Journal of Plant Ecophysiology
Maryam Gholamshahi
1
,
Ahmad Mehraban
2
*
,
Hamidreza Mobser
3
,
Hamid Reza Ganjali
4
1 - Department of Agriculture, Zahedan Branch, Islamic Azad University, Zahedan, Iran
2 - Associate Professor, Department of Agronomy, Zahedan Branch, Islamic Azad University, Zahedan, Iran
3 - Department of Agriculture, Zahedan Branch, Islamic Azad University, Zahedan, Iran
4 - Department of Agriculture, Zahedan Branch, Islamic Azad University, Zahedan, Iran
Keywords: Essential oil, Essential elements, Carbohydrates, Chlorophyll, Nanotechnology,
Abstract :
To investigate the cultivation of fennel under the effect of time management and different levels of spraying of potassium nanoparticles in Bam city, this study was conducted in the spring of 2020-2021 and 2021-2022 crop year as a factorial experiment in a randomized complete block design with three replications. In this experiment, different stages of spraying as the first factor in the three stages of stemming, flowering, and fruiting; and different concentrations of potassium nanoparticles as the second factor in five concentrations including non-spraying (control), 2, 3, 4 and 5/lit potassium nanoparticles. The results showed that the highest plant height (84.59 cm), biomass yield (4931.3 kg/ha), grain yield (3311.1 kg/ha), thousand-seed weight (5.09 g), number of umbrellas per plant (45.97), seed carbohydrates (3.12 mg / g), highest chlorophyll a, b and total (2.73, 0.54 and 3.27 mg / g), respectively. Also, the highest percentage of seed essential oil (4.37%) with spraying at a concentration of 5/lit potassium nanoparticles, and the highest yield of seed essential oil (69.5 kg/ha) with spraying at a concentration of 4/lit potassium nanoparticles in the fruiting stage was obtained in the second year of the experiment. According to the findings of the research, to achieve the maximum yield of seed essential oil, spraying at a concentration of 4 per thousand potassium nanoparticles in the fruiting stage in the second year of the experiment is suggested.
آستانه، ن،. ف. بذرافشان، م. زارع، ب. اميري و ع. بحراني. 1399. تاثيركود اوره و نانو كلاته نيتروژن بر عملكرد و اجزاي عملكرد گندم رقم سيروان در تنش خشكي بعد از گلدهي. مجله علمي پژوهشي اكوفيزيولوژي گياهي. 12(43): 228-214.
آقازاده خلخالی، د.، ع. مهرآفرین، و. عبدوسی و ح.ع. نقدی بادی. 1394. عملکرد دانه و موسیلاژ اسفرزه (Plantago psyllium L.) در پاسخ به محلول پاشی نانو کود کلات آهن و پتاسیم. فصلنامه علمی پژوهشی گیاهان دارویی. 4(1): 31-23.
امیدبیگی، ر. 1392. تولید و فرآوری گیاهان دارویی. ویرایش دوم. انتشارات آستان قدس رضوی، مشهد، ایران. 442 صفحه.
بخشايش، ا و ص. شرف الدين زاده. 1396. پايش محصولات تجاري فناوري نانو در صنعت كشاورزي. ماهنامه فناوري نانو. 16(2): 36-27.
بیاتی، ف.، ا. آینه بند و ا. فاتح. 1393. بررسی تأثیر مقادیر و زمان¬هاي کابرد کود آهن نانو بر عملکرد و اجزاي عملکرد کلزا (Brassica napus L.) نشریه پژوهش¬هاي زراعی ایران. 12(4): 812-805.
پوریوسف، م. 1393. تأثیر تنش خشکی انتهای فصل و زمان برداشت بر عملکرد دانه و محتوای اسانس رازیانه (Foeniculum vulgare Mill.). تحقیقات گیاهان دارویی و معطر ایران. 30(6): 897-889.
توان، ط.، م. نياكان و ع. نوري نيا. 1393. اثر كود نانو پتاسيم بر فاكتورهاي رشد، سيستم فتوسنتزي و ميزان پروتئين گياه گندم (Triticum aestivum L.) رقم N8019. نشريه پژوهش¬هاي اكوفيزيولوژي گياهي ايران. (35): 71-61.
رضايي، ف،. م. براري، ع. حاتمي و ح. حسينيان خوشرو. 1398. تأثير محلول¬پاشي متانول و نانو كود پتاس بر برخي ويژگي¬هاي فيزيولوژيكي، عملكرد و اجزاي عملكرد گندم. مجله اكوفيزيولوژي گياهي. 11(39): 191-180.
صفایی، ل.، د. افیونی و ح. زینلی. 1390. گیاه دارویی رازیانه از دانسته¬های کهن تا یافته های نوین. نشر نصوح اصفهان. 147 صفحه.
كاظمي، ا،. ح.ر. گنجعلي، ا. مهربان و ا. قاسمي. 1399. تأثير نانوكودهاي گوناگون و تنش آبي بر عملكرد و اجزاي عملكرد سورگوم دانه¬اي در منطقه سيستان. مجله اكوفيزيولوژي گياهي. 12(41): 242-230.
محمدیان، ز.، غلامعلی زاده آهنگر، ا. ، قربانی، م.، محکمی، ز. 1395. تاثیر کودهای پتاسیمی بر گیاهپالایی سرب و کادمیوم در یک خاک آلوده توسط اسطوخودوس((Lavendula Officnalis L.. مجله پژوهشهای حفاظت آب و خاک. 23(3): 287-273.
میرعبداللهی، س.م. 1390. تنوع در محتوا و ترکیب اسانس رازیانه در شرایط آبیاری محدود. پایان نامه کارشناسی ارشد. دانشگاه زنجان.
Amirnia, R., M. Bayat and M. Tajbakhsh. 2014. Effects of nano fertilizer application and maternal corm weight on flowering of some saffron (Crocus sativus L.) ecotypes. Turkish Journal of Field Crops. 19 (2): 158-168.
Arnon, D.I. 1965. Copper enzymes in isolated chloroplasts. Polyphenol-oxidase in Beta vulgaris. Plant Physiology. 24: 1-15.
Briat, J.F., C. Dubos and F. Gaymard. 2015. Iron nutrition, biomass production, and plant productquality. Trends Plant Science. 20: 33-40.
Gardner, F.P., R. Piers and L. Michelle. 2011. Physiology of crop plants. Translation: Koocheki A, and Sarmadnia Gh. 16th ed. Mashhad SID Press, 400 pages.
Ghahremani, A., K. Akbari, M. Yousefpour and H. Ardalani. 2014. Effects of nano-potassium and nano-calcium chelated fertilizers on qualitative and quantitative characteristics of Ocimum basilicum. Int J Pharm Res Schol. 3: 235-241.
Harsini, M.G., H. Habibib and G.H. Talaei. 2014. Study the effects of iron nano chelated fertilizers foliar application on yield and yield components of new line of wheat cold region of kermanshah provence. Agricultural Advances. 3(4): 95-102.
Hassani, A., A. L. Tajali and S. M. Hosseni Mazinani. 2015. Study the Conventional Chemical Fertilizers and Nano-fertilizer of Iron, zinc and Potassium on Quantitative yield of Medicinal plant of Peppermint (Mentha Piperita L.) in Khuzestan. International Journal of Agriculture Innovations and Research (IJAIR). 3(4): 1078-1082.
Hassanpour aghdam, M. B., S. J. Tabatabaie, H. Nazemiyeh and A. Aflatuni. 2008. N and nutrition levels affect growth and essential oil content of costmary (Tanacetum balsamita L.). Food, Agriculture and Environment. 6(2): 150-154.
Irigoyen, J.J., D.W. Einerich and M. Sanchez-Diaz. 1992. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plant. 84: 55-60.
Jafarzadeh, R., M. Jami Moeini and M. Hokmabadi. 2013. The reaction yield and yield components of wheat to use of soil and foliar application of potassium nano fertilizer. J. Crop Prod. Res. 2: 189-197.
Karami, H., A. Maleki and A. Fathi. 2018. Determination Effect of Mycorrhiza and Vermicompost on Accumulation of Seed Nutrient Elements in Maize (Zea mays L.) Affected by Chemical Fertilizer. Journal of Crop Nutrition Science. 4(3): 15-29.
Khater, M.S. 2015. Magnetite-Nanoparticles Effects on Growth and essential oil of Peppermint. Current Science International. 4(2): 2077-4435.
Kjeldahl, J. 1883. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern (New method for the determination of nitrogen in organic substances). Zeitschrift für analytische Chemie. 22(1): 366-383.
Larki, S., A. Rahnama, and A. Aynehband. 2015. Effect of application of potassium fertilizers on physiological traits and cadmium accumulation in grain of two durum wheat (Triticum turgidum ssp. durum (Desf.) Husn.) cultivars. Iranian Journal of Crop Sciences. 17(3): 223-235.
Lim, T.K. 2013. Edible medicinal and non-medicinal plants: Volume 5, Fruits. Springer Science+Business Media Dordrecht. 38 P.
Liu, R and R. Lal. 2014. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports, 4: 5686-5691.
Najafi Vafa, Z., A.R. Sirousmehr, A. Ghanbari, I. Khammari and N. Falahi. 2015. Effects of nano zinc and humic acid on quantitative and qualitative characteristics of savory (Satureja hortensis L.). International Journal of Biosciences, 6: 124-136.
Olsen, S.R., C.V. Cole, F.S. Watanabe and L.A. Dean. 1954. Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate. U.S. Department of Agriculture, Washington DC: USDA Circ, 939p.
Patil, R.B. 2011. Role of potassium humate on growth and yield of soybean and black gram. International Journal of Pharma and Bio science, 2(1): 242-246.
Raj, H.A. and K.K. Thakral. 2008. Effect of chemical fertilizers on growth, yield and quality of fennel. Weed Technology. 17: 134-139.
Rameshaiah, G., N. Jpallavi and S. Shabnam. 2015. Nano fertilizers and nano sensors an attempt for developing smart agriculture. Engineering Research and General Science. I.J. 3(1): 314-320.
Rawat, S., I.O. Adisa, Y. Wang, Y. Sun, A.S. Fadil, G. Niu, N. Sharma, J.A. Hernandez-Viezcas, J.R. Peralta-Videa and J.L. Gardea-Torresdey. 2019. Differential physiological and biochemical impacts of nano vs. micron Cu at two phenological growth stages in bell pepper (Capsicum annuum) plant. Nano Impact, 14: 100-161.
Selva-Preetha, P and N. Balakrishnan. 2017. A reviw of nanofertilizers and their use and function in soil. Microbiology and Applied Sciences .I.J. 6 (12): 3117-3133.
Subramanian, K.S. and M. Thirunavukkarasu. 2017. Nano-fertilizers and Nutrient Transformations in Soil. In: Ghorbanpour, M., Khanuja, M., Varma, A. (Eds.). Nanoscience and Plant-Soil Systems. Soil Biology. 48: 305-318.
Zahedifar, M and Najafian, S. 2016. Ocimum basilicum L. growth and nutrient status as influenced by biochar and potassium-nano-chelate fertilizers. Archives of Agronomy and Soil Science. DOI: 10.1080/03650340.2016.1233323.