The change of physiological activities in peanut (Arachis hypogaea L.) in response to different irrigation regimes and Ethanol foiliar application
Subject Areas : Journal of Plant EcophysiologyReza Ahmadi Sharif 1 , Hamid Reza Zakerin 2 , Marefat Mostafavi Rad 3 , saeed sayfzadeh 4 , Seyed Alireza Valadabadi 5
1 - Ph. D. Student, Department of Agronomy, Takestan Branch, Islamic Azad University, Takestan, Iran
2 - Assistant Professor, Department of Agronomy, Takestan Branch, Islamic Azad University, Takestan, Iran
3 - Assistant Professor, Crop and Horticultural Science Research Department, Guilan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran.
4 - Associate Professor, Department of Agronomy, Takestan Branch, Islamic Azad University, Takestan, Iran
5 - Associate Professor, Department of Agronomy, Takestan Branch, Islamic Azad University, Takestan, Iran
Keywords: Drought stress, Seed yield, Peanut, Antioxidant enzymes, osmolytes,
Abstract :
In order to evaluate of physiological activities in peanut (Arachis hypogaea L.) in response to different irrigation regimes and Ethanol foliar application, an experiment carried out as split plat based on randomized complete block design with three replications in experimental field of Agicutural and Natural Resources Research and Education Center of Guilan Province, Astara (Kanroud research station), Iran during 2018 and 2019 cropping seasons. Four level of irrigation regimes at 25, 50 and 75 and 100 mm evaporation from class A pan and three levels of Ethanol 10, 20 and 30 % (v:v), comprised experimental factors, as main plot and sub plot, respectively. The interaction effect beween irrigation regime and Ethanol alcohol was significant for all measuered characteristics in peanut at 1% probability level. Drought stress caused to decrease grain yield per unit area, leaf chlorophy index and leaf relative water content in peanut. But, drought stress increased the value of proline, soluble sugar, soluble protein, anthocyanins and the activitiy of catalase, superoxide dismutase and peroxidase enzymes. The greatest grain yield (3275 kh/ha) was obtained in response to irrigation regime after 25 mm evaporation fron “A pan” along with foliar application of Ethanol at the rate of 20% (v/v). In general, result showed that the foliar application of Ehanol could be recommendable in direction to enhance grain yield and resistance of peant plans againest to drought stress under similar climatic condition.
اسکندری، ح. و ا. عالیزاده امرایی. 1395. تأثیر آبیاری تکمیلی در مرحله رشد زایشی بر عملکرد دانه، روغن و کارآیی انرژی سیستم تولید کلزا در شرایط دیم. به زراعی کشاورزی. 18(4): 919-907.
حاتموند، م.، ط. حسنلو، ف. دهقاننیری، ا. ح. شیرانیراد، س. ع. طباطبایی و س. م. حسینی. 1393. بررسی برخی شاخصهای فیزیولوژیک و بیوشیمیایی ارقام کلزا تحت تنش خشکی. مجله تنشهای محیطی در علوم زراعی. 7(2): 185-173.
رمرودی، م.؛ ع خمر. 1392. اثرات متقابل محلولپاشی اسید سالیسیلیک و تیمارهای مختلف آبیاری بر برخی
ویژگیهای کمی، کیفی و تنظیم کنندههای اسمزی ریحان. نشریه تحقیقات کاربردی اکوفیزیولوژی گیاهان. 1(1): 32-19.
صانعینژاد، ع. ا.، م. توحیدی، ب. حبیبیخانیانی، م. صادقی و م. خرمیان. 1398. بررسی تاثیر محلولپاشی متانول بر برخی صفات فیزیولوژیکی لوبیا چشمبلبلی در شرایط تنش کمآبی. نشریه علمی زراعت و اصلاح نباتات 15(1): 4561-45.
مرادیتوچایی، م.، س. سیفزاده، ح. ر. ذاکرین و س. ع. ولدآبادی. 1396. بررسی اثر محلولپاشی متانول و اسید آسکوربیک بر رشد و عملکرد بادام زمینی در شرایط دیم. فصلنامه علمی پژوهشی فیزیولوژی گیاهان زراعی. 9(33): 82-65.
موحدیدهنوی، م.، ن. نیکنام، ب. بهزادی، ر. محتشمی و ر. باقری. 1396. مقایسۀ پاسخهای فیزیولوژیک کتان به تنش خشکی و شوری و محلولپاشی با اسید سالیسیلیک. زیستشناسی گیاهی ایران، 9(33): 62-39.
موسوی، س. م.، و. اکبرپور، ح. مرادی و ح. صادقی. 1400. خصوصیات رشدی و ترکیبات فیتوشیمیایی آویشن باغی در پاسخ به محلولپاشی برگی متانول و اتانول. نشریه پژوهشهای تولید گیاهی. 28(1): 229-213.
مهلقا، ق و م. نیاکان. 1384. بررسی اثر تنش خشکی بر میزان قندهای محلول، پروتئین، پرولین، ترکیبات فنلی و فعالیت آنزیم نیتراتردوکتاز گیاه سویا رقم گرگان 3. نشریه علوم (دانشگاه خوارزمی). 1(2): 550-537.
نریمانی، ح.، ر. سیدشریفی و ف. آقایی. 1399. اثر متانول بر فعالیت آنزیمهای آنتیاکسیدانی، برخی اسمولیتهای سازگار و صفات بیوشیمیایی گندم تحت شرایط قطع آبیاری. فیزیولوژی گیاهان زراعی. 47(3): 144-99.
یوسفزاده نجفآبادی، م و پ. احسانزاده. 1398. بررسی اثر سالیسیلیک اسید بر رنگدانههای فتوسنتزی، فعالیت آنزیمهای آنتیاکسیدان و اجزای عملکرد سه ژنوتیپ کنجد تحت شرایط مختلف رطوبتی. فرآیند و کارکرد گیاهی. 9(33): 151-137
Ahmadpour, R., S. R. Hosseinzadeh and N. Armand. 2016. Evaluation of Methanol role in reducing the negative effects of water deficit stress in lentil (Lensculinaris Medik.). J. Plant Process Function. 5(17): 1-14.
Akcay, U. C., O. Ercan, M. Kavas, L.Yildiz, H. A. Oktem and M. Yucel. 2010. Drought-induced oxidative damage and antioxidant responses in peanut (Arachis hypogaea L.) Seedlings. Plant Growth Regul. 61(1): 21-28.
Akram, N. A., F. Shafiq and M. Ashraf. 2018. Peanut (Arachis hypogaea L.): A Prospective legume crop to offer multiple health benefits under changing climate. Compreh. Rev. Food Sci. Food Safety. 17: 1325- 1338.
Armand, N., H. Amiri and A. Ismaili. 2016. The ef-fect of methanol on photosynthetic parameters of bean (Phaseolus vulgaris L.) under water deficit. Photosynthetica. 54: 288–294.
Asada, K. 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141:391-396.
Aydinsakir, K., D. Nazmi, B. Dursun, B. Ruhi and T. Ramazan. 2016. Assessment of different irrigation levels on peanut crop yield and quality components under Mediterranean conditions. J. Irri. Drain. Engin. 142(9):doi.org/10.1061/(ASCE)IR.1943-4774.0001062.
Babaei, F., H. Heydari shrifabad, M. N. Safarzadeh Vishekaei, G. Normohammadi and I. Majidi Harvan. 2014. Effect of foliar application of methanol and ascorbic acid on physiological characteristics and yield of peanut (Arachis hypogaea L.). Adv. Environ. Biolo. 8(16): 280-285.
Bates, L., S. R. P. Waldren and I. D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant Soil. 39:205-207.
Bradford, M. 1976. A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Ann. Rev. Biochem. 72: 248-254.
Dawood, M. G., S. R. El-Lethy and M. S. Sadak. 2013. Role of methanol and yeast in improving growth, yield, nutritive value and antioxidants of soybean. World Appl. Sci. J. 26(1): 6-14.
Dimkpa, C. O., P. S. Bindraban, J. Fugice, S. Agyin-Birikorang, U. Singh and D. Hellums. 2017. Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agron. Sust. Develop. 37(1): 5. doi.org/10.1007/s13593-016-0412-8.
DuBois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28(3): 350–356.
Geerts, S. and D. Raes. 2009. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 96(9): 1275-1284.
Ghaffari, G., M. Toorchi., S. Aharizad and M. R. Shakiba. 2011. Evaluation of traits related to water deficit stress in winter rapeseed cultivars. J. Envi. Res. Technolo. 1: 338-350.
Ghobadi, M., S. Taherabadi, M. E. Ghobadi, G. R. Mohammadi and S. Jalali Honarmand. 2013. Antioxidant capacity, photosynthetic characteristics and water relations of sunflower (Helianthus annuus L.) cultivars in response to drought stress. Indus. Crops Produc. 50: 29-38.
Gonzalez, L. and M. Gonzalez-Vilar. 2003. Determination of Relative Water Content. In: Handbook of Plant Ecophysiology Techniques (Eds. Manuel, J., and R. Goger). Pp. 207-212, Kluwer Academic Publishers, London.
Hussain, H. A., S. Men, S. Hussain, Y. Chen, S. Ali, K. Zhang, Y. Li, Q. Xu, C. Liao and L. Wang. 2019. Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scient. Report. 9(1): https://doi.org/10.1038/s41598-018-37186-2 PMID: 30626917.
Jabereldar, A. A., A. M. El Naim, A. A. Abdalla and Y. M. Dagash. 2017. Effect of water stress on yield and water use efficiency of sorghum (Sorghum bicolor L. Moench) in semi-arid environment. Int. J. Agric. Fores. 7(1): 1-6.
Jia, K., C. Yan, H. Yan and J. Gao. 2020. Physiological responses of turnip (Brassica rapa L. subsp. Rapa) seedlings to salt stress. Hort. Sci. 55(10):1567–1574. 2020. https://doi.org/10.21273/HORTSCI15187-20.
Joorabi, S., H. R. Eisvand, A. Ismaili and A. Nasrolahi. 2020. ZnO affects soybean grain yield, oil quantity, quality, and leaf antioxidant activity in drought stress conditions. J. Plant Process Function. 8(34): 61-70.
Kadkhodaie, A., J. Razmjoo, M. Zahedi and M. Pessarakli. 2014. Selecting sesame genotypes for drought tolerance based on some physiochemical traits. Agron. J. 106: 111-118.
Kambiranda, D. M., H. K. N. R. Vasanthaiah, A. Katam Ananga, S. M. Basha and N. Naik. 2012. Impact of drought stress on peanut (Arachis hypogaea L.) productivity and food safety. Plants and Environment, Rijeka, Croatia: InTech, pp. 249-272.
Kishor, P. B., K. S. Sangama, R. N. Amrutha, P. S. Laxmi, K. R. Naidu and K. S. Rao. 2005. Regulation of praline in higher plants: its implications in plant growth and abiotic stress tolerance. Current Sci. 88: 424- 438.
Krishna, S., K. Surinder, S. K. Thind and K. Gurpreet. 2004. Interactive effects of phenolics and light intensity on vegetative parameters and yield in soybean (Glycine max L. Merrill). Environ. Ecol. 22: 390-394.
Li, J., J. Ma, H. Guo, J. Zong, J. Chen, Y. Wang, D. Li, L. Li, J. Wang and J. Liu. 2018. Growth and physiological responses of two phenotypically distinct accessions of centipedegrass (Eremochloa ophiuroides (Munro) Hack.) to salt stress. Plant Physiol. Biochem. 126:1–10.
Li, Q., A. Yang and W. H. Zhang. 2017. Comparative studies on tolerance of rice genotypes differing in their tolerance to moderate salt stress. BMC Plant Biol. 17(1):141.
Liu, Y. Q., Z. X. Chen and W. Q. Yang. 2008. Effect of high temperature and drought stress on the physiological characteristicsof Eucalyptus urophylla and Eucalyptus grandis Seedlings. Acta Hort. Sinica. 35: 761-764.
Masukasu, H., O. Karin and H. Kyoto. 2003. Enhancement of anthocyanin biosynthesis by sugar in radish (Raphanus sativus) hypocotyls. Plant Sci. 164(2): 259-265.
Masoumi, H., M. Masoumi, F. Darvishi, J. Daneshian, G. Nourmohammadi and D. Habibi. 2010. Change in several antioxidant enzymes activity and seed yield by water deficit stress in soybean (Glycine max L.) cultivars. Notulae Botan. Horti Agrobot. Cluj-Napoca: 38(3): 86-94.
Mirzaee, M., A. Moieni and F. Ghanati. 2013. Effects of drought stress on the lipid peroxidation and antioxidant enzyme activity in two canola (Brassica napus L.) cultivars. J. Agric. Sci. Technol. 15: 593-602.
Pereira, J. W., L. de, E. C. A. Silva, L. N. Luz., R. J. M. C. Nogueira, P. A. Melo Filho, L. M. Lima and R. C. Santos. 2015. Cluster analysis to select peanut drought tolerance lines. Aust. J. Crop Sci. 9(11): 1095-1105.
Ratnakumar, P. and V. Vadez. 2011. Groundnut (Arachis hypogaea L.) genotypes tolerant to intermittent drought maintain a high harvest index and have small leaf canopy under stress. Func. Plant Biol. 38(12): 1016-1023.
Ramirez, I., F. Doreta, V. Espinoza, E. Jimenez, A. Mercado and H. Pen a-Cortes. 2006. Effects of foliar and root applications of methanol on the growth of arabidopsis, tobacco, and tomato plants. Aust. J. Crop Sci. 4(6): 398-401.
Samadimatin, A. and A. Hani. 2017. Effect of ethanol and humic acid foliar spraying on morphological traits, photosynthetic pigments and quality and quantity of essential oil content of Dracocephalum moldavica L.. Iran. J. Plant Physiol. 8(1): 2299-2306.
Setayeshmehr, Z. and S. Esmailzadeh Behabadi. 2013. The effect of salinity on some physiological and biochemical properties of the herb coriander (Coriandrum sativum L.). J. Plant Produc. Res. 20(3): 111- 128.
Seyed Sharifi, R. 2016. Application of biofertilizers and zinc increases yield, nodulation and unsaturated fatty acids of soybean. Zemdirbyste-Agric. 103: 251–258.
Sudhakar, C., A. Lakshmi and S. Giridarakumar. 2001. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci. 161: 613–619.
Vendruscoloa, E. C. G., I. Schusterb, M. Pileggic, C. A. Scapimd, H. B. C. Molinarie, C. J. Marure and L. G. E. Vieira. 2007. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J. Plant Physiol. 164(1): 1367-1376.
Wang, Y., P. Stevanato, L. Yu, H. Zhao, X. Sun, F. Sun, J. Li and G. Geng. 2017. The physiolog- ical and metabolic changes in sugar beet seedlings under different levels of salt stress. J. Plant Res. 130(6):1079–1093.
Xia, J., X. Kong, X. Shi, X. Hao, N. Li, A. Khan and H. Luo. 2019. Physiolo-biochemical characteristics and correlation analysis of the seeds of some cotton (Gossypium hirsutum L.) genotypes under cold temperature stress. App. Ecolo. Env. Res. 18(1): 89-105.
Youssefi, A., A. Nshanian and M. Azizi. 2011. Evaluation of influences of drought stress in terminal growth duration on yield and yield components of different spring Brassica oilseed species. Amer-Eur J. Agric. Environ. Sci. 11: 406-410.
Zhang, S. B., Q. U. Lu, H. Yang, Y. Li and S. Wang. 2011. Aqueous enzymatic extraction of oil and protein hydrolysates from roasted peanut seeds. J. Amer. Oil Che. Soci. 88: 727-732.
_||_