Comparison of quantitative and qualitative characteristics of two tall rice cultivars under different planting systems
Subject Areas : Journal of Plant EcophysiologyMorteza Siavoshi 1 * , Salman Dastan 2
1 - Assistant Professor, Department of Agricultural Science, Payame Noor University, Tehran, Iran
2 - Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran
Keywords: Grain yield, Rice, Nutrient concentration, cropping system,
Abstract :
In order to compare the quantitative and qualitative characteristics of two tall rice cultivars under different planting systems, an experiment was conducted as a split-plot in a randomized complete block design with four replications at the farmer's field located in Neka during 2021-2022. The rice cultivars at two levels (Tarom Hashemi and Sange-Tarom) as the main plot and the planting systems at three levels (traditional planting, improved planting and system of rice intensification (SRI)) as the sub-factor were considered. The results showed that the Tarom Hashemi cultivar (3371 kg.ha-1) and Sange-Tarom (3448 kg.ha-1) were in the same statistical group in terms of grain yield, but the nitrogen concentration in rice grains for Tarom Hashemi (1.49%) was significantly higher than Sange-Tarom (1.39%). The plants cultivated in the SRI produced the highest grain yield with an average of 3736 kg.ha-1, which showed an increase in yield by 14.9% and 11.3%, respectively, compared with the traditional and improved planting systems. The use of SRI management led to the production of the highest concentration of nitrogen in the grain (1.63%) and the application of the improved planting system resulted in the accumulation of the highest concentration of phosphorus (0.15%) and potassium (0.47%) in the rice grain. Therefore, according to the results of the present research, the use of SRI management system increases the quantitative and qualitative characteristics and sustainable production of rice.
ابوطالبیان اسماعیلزاده، م.، ی. نیکنژاد، ه. فلاحآملی و ن. خیری. 1395. تعیین زمان مناسب نشاکاری برنج (Oryza sativa L.) رقم طارم محلی در کشت دوم در مازندران. نشریه اکوفیزیولوژی گیاهان زراعی. 10 (4): 1006-991.
جلالی کوتنایی، ن.، ع. شاهنظری، م. خ. ضیاءتبار احمدی، م. خوشروش و م. رضایی. 1401. ارزیابی تأثیر سامانههای مختلف کشت بر بهرهوری آب، عملکرد و اجزای عملکرد دو رقم اصلاحشده و بومی برنج. نشریه آبیاری و زهکشی ایران. 1 (16): 147-135.
خیری، ن. و ح. ر. مبصر. 1395. اثر سن نشا و میزان بذر مصرفی در خزانه بر صفات زراعی و عملکرد دانه برنج (Oryza sativa L.) رقم طارم هاشمی. نشریه اکوفیزیولوژی گیاهان زراعی. 10 (2): 446-431.
دستان، س.، ق. نورمحمدی و ح. مدنی. 1393. مقایسه صفات زراعی چهار رقم برنج (Oryza sativa L.) در نظامهای کاشت در منطقه نکا. بهزراعی کشاورزی. 16 (2): 246-231.
رمضانی، ا.، ع. سروشزاده و م. صلحی. 1395. اثر سیستمهای کشت و تغذیه برگی با کود روی بر عملکرد، اجزای عملکرد و آب مصرفی برنج. تحقیقات غلات. 6 (1): 55-43.
شهدی کومله، ع.، س. ر. سیدی و م. فروغی. 1401. اثر کاربرد کودهای دامی بر جذب عناصر غذایی دو رقم برنج و برخی ویژگیهای شیمیایی خاک پس از برداشت. نشریه علمی مدیریت اراضی. 10 (2): 258-237.
صادقی، س. ع. و ح. ر. مبصر. 1389. بررسی روابط منبع و مخزن در سیستمهای مختلف زراعی کشت برنج. مجله پژوهشهای به زراعی. 2 (4): 413-401.
معینی، ن.، م. ر. داداشی، س. دستان و ا. فرجی. 1399. ارزیابی برخی شاخصهای کمی و کیفی ارقام محلی برنج (Oryza sativa L.) در نظامهای کاشت شالیزاری در شمال ایران. فیزیولوژی محیطی گیاهی. 15 (57): 83-65.
منصورقناعی پاشاکی، ک.، غ. محسنآبادی، م. ح. بیگلویی، م. ب. فرهنگی و ع. مختصی بیدگلی. 1401. تأثیر زراعت برنج (Oryza sativa L.) توأم با اردک بر روند تغییرات شاخصهای رشدی، فتوسنتز و بهرهوری آب آبیاری و باران در سیستمهای مختلف کشت. نشریه دانش کشاورزی و تولید پایدار. 32 (1): 174-149.
Ahmadi, K., H. Ebadzadeh, F. Hatami, H. Abdolshah and A. Kazemian. 2019. Agricultural Statistics Crop Year 2017-2018: Crop Production (Volume 1), 1st edn. Ministry of Agriculture, Program and Budget Deputy, Directorate General of Statistics and Information, Tehran, Iran, p. 95.
Alizadeh, M. A., and Isvand, H.R. 2006. Rice in Egypt. Ministry of Jihad-e-Agriculture Publications. Agronomy Deputy. 541 pp.
Amiri Larijani, B., Ramazanpor, Y., Hossaini, J., and Shokri, A. Y. 2012. The comparison of rice yield and crop productivity under conventional, improved and SRI cropping systems. Research Report. No. 41774. Agric. Sci. Inf. Doc. Center. (ASIDC). 36 p.
Aref, M., and Homaei, M. 2006. The effect of foliar micronutrients zinc and manganese on yield and yield components. First Edition. Tarbiat Modarres University Press, 124 p.
Ben Hassen, M., F. Monaco, A. Facchi, M. Romani, G. Valè and G. Sali. 2017. Economic performance of traditional and modern rice varieties under different water management systems. Sustain. 9(3): 347.
Carrijo, D. R., M. E. Lundy and B. A. Linquist. 2017. Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Res. 203: 173-180.
Chapagain, T. and E. Yamaji. 2010. The effects of irrigation method, age of seedling and spacing on crop performance, productivity and water-wise rice production in Japan. Paddy Water Envion. 8(1): 81-90.
Fageria, N. K., H. R. Gheyi and C. S. Carvalho. 2014. Yield, potassium uptake, and use efficiency in upland rice genotypes. II INOVAGRI International Meeting, 13-16 April, Fortaleza, Brazil. pp 4515-4520.
FAO STAT. 2018. FAO statistical database (available at www.fao.org).
Farooq, M., N. K. Kobayashi, A. Wahid, O. Ito and S. M. A. Basra. 2009. Strategies for producing more rice with less water. Advanc. Agron. 101: 351-388.
Jones, J. R., J. B. Wolf and H. A. Mills. 1991. Plant Analysis Handbook: A Practical Sampling, Preparation, Analysis, and Interpretation Guide. Micro and Macro Publishing Inc. Athens, Georgia.
Kassam, A., W. Stoop and N. Uphoff. 2011. Review of SRI modifications in rice crop and water management and research issues for making further improvements in agricultural and water productivity. Paddy Water Environ. 9: 163-180.
Krishna, A., N. K. Biradarpatil and B. B. Channappagoudar. 2008. Influence of system of rice intensification (SRI) cultivation on seed yield and quality. Karnataka J. Agric. Sci. 21(3): 369-372.
Mansour Ghanaei-Pashaki, K., G. Mohsen abadi, M. Bigluei, M. Farhangi and A. Mokhtassi-Bidgoli. 2022. Effect of rice-duck co-cultivation on the trend of changes in growth indices, photosynthesis and irrigation and precipitation water productivity in different cultivation systems. J Agric. Sci. Sustain. Produc. 32(1): 149-174.
Menete, M. Z. L., H. M. Van Es, R. M. L. Brito, S. D. DeGloria and S. Famba. 2008. Evaluation of system of rice intensification (SRI) component practices and their synergies on salt-affected soils. Field Crops Res. 109: 34-44.
Nirmala, B., M. D. Tuti, R. Mahender Kumar, A. Waris, P. Muthuraman, B. Parmar and T. Vidhan Singh. 2021: Integrated assessment of system of rice intensification vs. conventional method of transplanting for economic benefit, energy efficiency and lower global warming potential in India. Agroecol. Sustain. Food Syst. 45(5): 745-766.
Pasuquin, E., T. Lafarge and B. Tubana. 2008. Transplanting young seedlings in irrigated rice fields: Early and high tiller production enhanced grain yield. Field Crops Res. 105: 141-55.
Pourgholam-Amiji, M., A. Liaghat, M. Khoshravesh and H. M. Azamathulla. 2021. Improving rice water productivity using alternative irrigation (case study: North of Iran). Water Supply. 21(3): 1216-1227.
San-oh, Y., T. Sugiyama, D.Yoshita, T. Ookawa and T. Hirasawa. 2006. The effect of planting pattern on the rate of photosynthesis and related processes during ripening in rice plants. Field Crops Res. 96: 113-24.
Shrestha, J., K. K. Shah and K. P. Timsina. 2020. Effects of different fertilizers on growth and productivity of rice (Oryza sativa L.): A review. Int. J. Global Sci. Res. 7(1): 1291-1301.
Singh, Y., E. Humphreys, S. S. Kukal, B. Singh, A. Kaur, S. Thaman, A. Prashar, S. Yadav, J. Timsina, S. S. Dhillon, N. Kaur, D. J. Smith and P. R. Gajri. 2009. Crop performance in permanent raised bed rice-wheat cropping system in Punjab. India. Field Crops Res. 110(1): 1-20.
Styger, E. 2009. System of rice intensification (SRI) –communey – based evaluation in Goundam and dire ciroles, Timbuktu, Mail, 2008/2009.
Thakur, A. K., S. Rath, S. Roychowdhury and N. Uphoff. 2010. Comparative performance of rice with system of rice intensification (SRI) and conventional management using different plant spacings. J. Agron. Crop Sci. 196: 146-159.
Thakur, A. K., S. Rath, D. U. Patil and A. Kumar. 2011. Effects of rice plant morphology and phsiology of water and associated management practices of the system of rice intensification and their implications for crop performance. Paddy Water Environ. 9: 13-24.
Thakur, A. K., S. Rath and K. G. mandal. 2013. Differential responses of system of rice intensification (SRI) and conventional flooded rice management methods to applications of nitrogen fertilizer. Plant Soil. 9: 13-24.
Thakur, A. K., R. K. Mohanty, D. U. Patil and A. Kumar. 2014. Impact of water management on yield and water productivity with system of rice intensification (SRI) and conventional transplanting system in rice. Paddy Water Environ. 12: 413-424.
Uphoff, N. 2005. Features of the system of rice intensification (SRI) apart from increases in yield. Cornell International Institute for food, agriculture and devolopment.
Waling, I., W. V. Vark, V. J. G. Houba and J. J. Vanderlee. 1989. Soil and Plant Analysis, A series of syllabi. Part 7. Plant Analysis Procedures. Wageningen Agriculture University, Netherland. 168p.
_||_