Physiological Responses and Nutritional Implications of Physalis alkekengi L. Under Varied Salinity Stress and Si and Se Nanoparticle Treatments
Subject Areas : Journal of Ornamental PlantsMohammad Javad Abdi 1 , Marzieh Ghanbari Jahromi 2 , Seyed Najmmaddin Mortazavi 3 , Sepideh Kalateh Jari 4 , Mohammad Javad Nazarideljou 5
1 - Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 - Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 - Department of Horticultural Sciences, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
4 - Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
5 - Department of Horticultural Sciences, Mahabad Branch, Islamic Azad University, Mahabad, Iran.
Keywords: Antioxidant defense system, Fatty acid composition, Nanoparticle, Salinity stress,
Abstract :
This study systematically investigates the physiological responses of Physalis alkekengi to diverse conditions of salinity stress (0, 50, 100, and 200 mM NaCl), coupled with the application of selenium (Se) nanoparticles at concentrations of 25 and 50 mgl-1, as well as silicon (Si) nanoparticles at concentrations of 100 and 200 mg.l-1. The experiment involved a thorough examination of many characteristics connected to biomass, such as antioxidant enzyme activity, fatty acid composition, and elemental content. This analysis was conducted at varying levels of salinity and with the addition of nanoparticles. The findings revealed that exposure to salt stress has a detrimental effect on both plant development and fruit output, leading to changes in vegetative and morphological characteristics. The utilization of Se and Si nanoparticles had a significant alleviating impact on stress caused by salinity. The correlation matrix analysis revealed complex correlations among the examined parameters, emphasizing the interrelated responses of P. alkekengi to environmental stressors and nanoparticle interventions. Principal Component Analysis (PCA) revealed the hidden patterns and connections between variables, highlighting the significant influence of biomass-related features, antioxidant enzymes, and fatty acid content on the observed variability. The results of this study enhance our knowledge of the physiological processes that regulate P. alkekengi's reaction to high salt levels. Additionally, it offers valuable information on the possible beneficial impacts of Se and Si nanoparticles in reducing the negative consequences of salinity stress. The study's comprehensive breadth increases its relevance to future research focused on optimizing growth circumstances and strengthening the resistance of P. alkekengi in demanding situations.
Abdoli, S., Ghassemi-Golezani, K. and Alizadeh-Salteh, S. 2020. Responses of ajowan (Trachyspermum ammi L.) to exogenous salicylic acid and iron oxide nanoparticles under salt stress. Environmental Science and Pollution Research, 27: 36939-36953.
Afshari, M., Pazoki, A. and Sadeghipour, O. 2021. Foliar‐applied silicon and its nanoparticles stimulate physio‐chemical changes to improve growth, yield and active constituents of coriander (Coriandrum sativum L.) essential oil under different irrigation regimes. Silicon, 1: 1-12.
Al-aghabary, K., Zhu, Z. and Shi, Q. 2005. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of Plant Nutrition, 27: 2101-2115.
Alam, P., Arshad, M., Al-Kheraif, A. A., Azzam, M. A. and Al Balawi, T. 2022. Silicon nanoparticle-induced regulation of carbohydrate metabolism, photosynthesis, and ROS homeostasis in Solanum lycopersicum subjected to salinity stress. ACS Omega, 7: 31834-31844.
Ali, M., Afzal, S., Parveen, A., Kamran, M., Javed, M. R., Abbasi, G. H., Malik, Z., Riaz, M., Ahmad, S. and Chattha, M. S. 2021. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiology and Biochemistry, 158: 208-218.
Alsaeedi, A., El-Ramady, H., Alshaal, T., El-Garawany, M., Elhawat, N. and Al-Otaibi, A. 2019. Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiology and Biochemistry, 139: 1-10.
Alsamadany, H., Alharby, H. F., Al-Zahrani, H. S., Alzahrani, Y. M., Almaghamsi, A. A., Abbas, G. and Farooq, M. A. 2022. Silicon-nanoparticles doped biochar is more effective than biochar for mitigation of arsenic and salinity stress in quinoa: Insight to human health risk assessment. Frontiers in Plant Science, 13: 989504.
Anderson, J. A. 2002. Catalase activity, hydrogen peroxide content and thermotolerance of pepper leaves. Scientia Horticulturae, 95: 277-284.
Badawy, S. A., Zayed, B. A., Bassiouni, S. M., Mahdi, A. H., Majrashi, A., Ali, E. F. and Seleiman, M. F. 2021. Influence of nano silicon and nano selenium on root characters, growth, ion selectivity, yield, and yield components of rice (Oryza sativa L.) under salinity conditions. Plants, 10: 1657.
Bahmani, M., Rafieian-Kopaei, M., Naghdi, N., Nejad, A. S. M. and Afsordeh, O. 2016. Physalis alkekengi: A review of its therapeutic effects. Journal of Chemical and Pharmaceutical Sciences, 9: 1472-1485.
Banerjee, A., Singh, A., Sudarshan, M. and Roychoudhury, A. 2021. Silicon nanoparticle-pulsing mitigates fluoride stress in rice by fine-tuning the ionomic and metabolomic balance and refining agronomic traits. Chemosphere, 262: 127826.
Bisht, N., Phalswal, P. and Khanna, P. K. 2022. Selenium nanoparticles: A review on synthesis and biomedical applications. Materials Advances, 3: 1415-1431.
Bosch, E., Cuquel, F. L. and Tognon, G. B. 2016. Physalis size reduction for potted ornamental plant use. Ciência e Agrotecnologia, 40: 555-564.
Bouras, H., Choukr-Allah, R., Amouaouch, Y., Bouaziz, A., Devkota, K. P., El Mouttaqi, A., Bouazzama, B. and Hirich, A. 2022. How does quinoa (Chenopodium quinoa Willd.) respond to phosphorus fertilization and irrigation water salinity? Plants, 11: 216.
Chapman, H. D. and Pratt, P. F. 1962. Methods of analysis for soils, plants and waters. Soil Science, 93: 68.
Denaxa, N. K., Nomikou, A., Malamos, N., Liveri, E., Roussos, P. A. and Papasotiropoulos, V. 2022. Salinity effect on plant growth parameters and fruit bioactive compounds of two strawberry cultivars, coupled with environmental conditions monitoring. Agronomy, 12: 2279.
Fatemi, H., Esmaiel Pour, B. and Rizwan, M. 2021. Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (Coriandrum sativum L.) plants grown in lead (Pb)-spiked soil. Environmental Science and Pollution Research, 28: 1417-1425.
Gaafar, R., Diab, R., Halawa, M., Elshanshory, A., El-Shaer, A. and Hamouda, M. 2020. Role of zinc oxide nanoparticles in ameliorating salt tolerance in soybean. Egyptian Journal of Botany, 60: 733-747.
Garza-García, J. J., Hernández-Díaz, J. A., Zamudio-Ojeda, A., León-Morales, J. M., Guerrero-Guzmán, A., Sánchez-Chiprés, D. R., López-Velázquez, J. C. and García-Morales, S. 2021. The role of selenium nanoparticles in agriculture and food technology. Biological Trace Element Research, 200: 1-21.
Ghasemi-Soloklui, A. A., Didaran, F., Kordrostami, M. and Al-Khayri, J. M. 2023. Plant mediation to tolerate cadmium stress with selenium and nano-selenium. In: Nanomaterial Interactions with Plant Cellular Mechanisms and Macromolecules and Agricultural Implications. Springer, pp. 455-470.
Ghasemian, S., Masoudian, N., Saeid Nematpour, F. and Safipour Afshar, A. 2021. Selenium nanoparticles stimulate growth, physiology, and gene expression to alleviate salt stress in Melissa officinalis. Biologia, 76: 2879-2888.
Giannopolitis, C. N. and Ries, S. K. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology, 59: 309-314.
Golubkina, N., Logvinenko, L., Konovalov, D., Garsiya, E., Fedotov, M., Alpatov, A., Shevchuk, O., Skrypnik, L., Sekara, A. and Caruso, G. 2022. Foliar application of selenium under nano silicon on Artemisia Annua: Effects on yield, antioxidant status, essential oil, artemisinin content and mineral composition. Horticulturae, 8: 597.
González-García, Y., Cárdenas-Álvarez, C., Cadenas-Pliego, G., Benavides-Mendoza, A., Cabrera-de-la-Fuente, M., Sandoval-Rangel, A., Valdés-Reyna, J. and Juárez-Maldonado, A. 2021. Effect of three nanoparticles (Se, Si and Cu) on the bioactive compounds of bell pepper fruits under saline stress. Plants, 10: 217.
Guerriero, G., Hausman, J. F. and Legay, S. 2016. Silicon and the plant extracellular matrix. Frontiers in Plant Science, 7: 463.
Habibi, G. and Aleyasin, Y. 2020. Green synthesis of Se nanoparticles and its effect on salt tolerance of barley plants. International Journal of Nano Dimension, 11: 145-157.
Hajiboland, R. and Keivanfar, N. 2012. Selenium supplementation stimulates vegetative and reproductive growth in canola (Brassica napus L.) plants. Acta Agriculturae Slovenica, 99: 13–19.
Hawrylak-Nowak, B. 2022. Selenium-and Se-nanoparticle-induced improvements of salt stress tolerance in plants. In: Selenium and Nano-selenium in environmental stress management and crop quality improvement. Springer, pp. 91-120.
He, J., Alonge, M., Ramakrishnan, S., Benoit, M., Soyk, S., Reem, N. T., Hendelman, A., Van Eck, J., Schatz, M. C. and Lippman, Z. B. 2023. Establishing Physalis as a Solanaceae model system enables genetic reevaluation of the inflated calyx syndrome. The Plant Cell, 35: 351-368.
He, M. and Ding, N.-Z. 2020. Plant unsaturated fatty acids: Multiple roles in stress response. Frontiers in Plant Science, 11: 562785.
Helvacı, S., Kökdil, G., Kawai, M., Duran, N., Duran, G. and Güvenç, A. 2010. Antimicrobial activity of the extracts and physalin D from Physalis alkekengi and evaluation of antioxidant potential of physalin D. Pharmaceutical Biology, 48: 142-150.
Jiang, C., Zu, C., Lu, D., Zheng, Q., Shen, J., Wang, H. and Li, D. 2017. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific Reports, 7: 42039.
Karimi, R., Ghabooli, M., Rahimi, J. and Amerian, M. 2020. Effects of foliar selenium application on some physiological and phytochemical parameters of Vitis vinifera L. cv. Sultana under salt stress. Journal of Plant Nutrition, 43: 2226-2242.
Khan, I., Awan, S. A., Rizwan, M., Ali, S., Hassan, M. J., Brestic, M., Zhang, X. and Huang, L. 2021. Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicology and Environmental Safety, 222: 112510.
Kiumarzi, F., Morshedloo, M. R., Zahedi, S. M., Mumivand, H., Behtash, F., Hano, C., Chen, J.-T. and Lorenzo, J. M. 2022. Selenium nanoparticles (Se-NPs) alleviates salinity damages and improves phytochemical characteristics of pineapple mint (Mentha suaveolens Ehrh.). Plants, 11: 1384.
Li, A. L., Chen, B. J., Li, G. H., Zhou, M. X., Li, Y. R., Ren, D. M., Lou, H. X., Wang, X. N. and Shen, T. 2018. Physalis alkekengi L. var. franchetii (Mast.) Makino: An ethnomedical, phytochemical and pharmacological review. Journal of Ethnopharmacology, 210: 260-274.
Liang, Y., Liang, L., Shi, R., Luo, R., Yue, Y., Yu, J., Wang, X., Lin, J., Zhou, T. and Yang, M. 2024. Genus Physalis L.: A review of resources and cultivation, chemical composition, pharmacological effects and applications. Journal of Ethnopharmacology, 24: 324:117736. doi: 10.1016/j.jep.2024.117736
Monroy-Velandia, D. and Coy-Barrera, E. 2021. Effect of salt stress on growth and metabolite profiles of cape gooseberry (Physalis peruviana L.) along three growth stages. Molecules, 26(9): 2756.
Moradi, P., Vafaee, Y., Mozafari, A. A. and Tahir, N.A.R. 2022. Silicon nanoparticles and methyl jasmonate improve physiological response and increase expression of stress-related genes in strawberry cv. Paros under salinity stress. Silicon, 14: 10559-10569.
Morales-Espinoza, M. C., Cadenas-Pliego, G., Pérez-Alvarez, M., Hernández-Fuentes, A. D., Cabrera de la Fuente, M., Benavides-Mendoza, A., Valdés-Reyna, J. and Juárez-Maldonado, A. 2019. Se nanoparticles induce changes in the growth, antioxidant responses, and fruit quality of tomato developed under NaCl stress. Molecules, 24: 3030.
Muhammad, H. M. D., Abbas, A. and Ahmad, R. 2022. Fascinating role of silicon nanoparticles to mitigate adverse effects of salinity in fruit trees: A mechanistic approach. Silicon, 14: 8319–8326.
Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651-681.
Mushtaq, A., Khan, Z., Khan, S., Rizwan, S., Jabeen, U., Bashir, F., Ismail, T., Anjum, S. and Masood, A. 2020. Effect of silicon on antioxidant enzymes of wheat (Triticum aestivum L.) grown under salt stress. Silicon, 12: 2783-2788.
Okon, O. G. 2019. Effect of salinity on physiological processes in plants. In: Microorganisms in saline environments: Strategies and functions. Publisher: Springer Nature Switzerland AG 2019, pp. 237-262.
Patel, T. A., Kevadiya, B. D., Bajwa, N., Singh, P. A., Zheng, H., Kirabo, A., Li, Y. L. and Patel, K. P. 2023. Role of nanoparticle-conjugates and nanotheranostics in abrogating oxidative stress and ameliorating neuroinflammation. Antioxidants, 12: 1877.
Popova, V., Petkova, Z., Mazova, N., Ivanova, T., Petkova, N., Stoyanova, M., Stoyanova, A., Ercisli, S., Okcu, Z. and Skrovankova, S. 2022. Chemical composition assessment of structural parts (seeds, peel, pulp) of Physalis alkekengi L. fruits. Molecules, 27: 5787.
Ryan, M., Ehrenberg, S., Bennett, R. and Tibbett, M. 2009. Putting the P in ptilotus: A phosphorus-accumulating herb native to Australia. Annals of Botany, 103: 901-911.
Sanjay, S. S. and Shukla, A. K. 2021. Potential therapeutic applications of nano-antioxidants. Springer Singapore, 112 page.
Sanzari, I., Leone, A. and Ambrosone, A. 2019. Nanotechnology in plant science: to make a long story short. Frontiers in Bioengineering and Biotechnology, 7: 120.
Sardar, H., Khalid, Z., Ahsan, M., Naz, S., Nawaz, A., Ahmad, R., Razzaq, K., Wabaidur, S. M., Jacquard, C. and Širić, I. 2023. Enhancement of salinity stress tolerance in lettuce (Lactuca sativa L.) via foliar application of nitric oxide. Plants, 12: 1115.
Sheikhalipour, M., Esmaielpour, B., Behnamian, M., Gohari, G., Giglou, M. T., Vachova, P., Rastogi, A., Brestic, M. and Skalicky, M. 2021. Chitosan–selenium nanoparticle (Cs–Se NP) foliar spray alleviates salt stress in bitter melon. Nanomaterials, 11: 684.
Shomali, A., Aliniaeifard, S., Didaran, F., Lotfi, M., Mohammadian, M., Seif, M., Strobel, W. R., Sierka, E. and Kalaji, H. M. 2021. Synergistic effects of melatonin and gamma-aminobutyric acid on protection of photosynthesis system in response to multiple abiotic stressors. Cells, 10: 1631.
Sowmiya, V., Sakthi Priyadarsini, S. and Kumar, P. 2021. GC-MS Profiling of different fractions of Physalis minima Linn., leaves. Nveo-Natural Volatiles & Essential Oils Journal, 8(5): 12852-12859.
Terletskaya, N. V., Korbozova, N. K., Kudrina, N. O., Kobylina, T. N., Kurmanbayeva, M. S., Meduntseva, N. D. and Tolstikova, T. G. 2021. The influence of abiotic stress factors on the morphophysiological and phytochemical aspects of the acclimation of the plant Rhodiola semenowii Boriss. Plants, 10: 1196.
Wagner, G. J. 1979. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids, and anthocyanin in protoplasts. Plant Physiology, 64: 88-93.
Weinstock, B. A., Janni, J., Hagen, L. and Wright, S. 2006. Prediction of oil and oleic acid concentrations in individual corn (Zea mays L.) kernels using near-infrared reflectance hyperspectral imaging and multivariate analysis. Applied Spectroscopy, 60: 9-16.
Wu, H., Shabala, L., Shabala, S. and Giraldo, J. P. 2018. Hydroxyl radical scavenging by cerium oxide nanoparticles improves Arabidopsis salinity tolerance by enhancing leaf mesophyll potassium retention. Environmental Science, 5: 1567-1583.
Yadav, S., Irfan, M., Ahmad, A. and Hayat, S. 2011. Causes of salinity and plant manifestations to salt stress: A review. Journal of Environmental Biology, 32: 667.
Yaghubi, K., Vafaee, Y., Ghaderi, N. and Javadi, T. 2019. Potassium silicate improves salinity resistant and affects fruit quality in two strawberry cultivars grown under salt stress. Communications in Soil Science and Plant Analysis, 50: 1439-1451.
Zadegan, K., Monem, R. and Pazoki, A. 2023. Silicon dioxide nanoparticles improved yield, biochemical attributes, and fatty acid profile of cowpea (Vigna unguiculata [L.] Walp) under different irrigation regimes. Journal of Soil Science and Plant Nutrition, 23: 3197–3208.
Zahedi, S. M., Abdelrahman, M., Hosseini, M. S., Hoveizeh, N. F. and Tran, L. S. P. 2019. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environmental Pollution, 253: 246-258.
Zia-ur-Rehman, M., Anayatullah, S., Irfan, E., Hussain, S. M., Rizwan, M., Sohail, M. I., Jafir, M., Ahmad, T., Usman, M. and Alharby, H. F. 2023. Nanoparticles assisted regulation of oxidative stress and antioxidant enzyme system in plants under salt stress: A review. Chemosphere, 314: 137649.