آزمایش مقدماتی انتقال ژن به چمانواش بلند با واسطهگری Agrobacterium tumefaciens
Subject Areas : Journal of Ornamental Plantsمصطفی خوشحال سرمست 1 , Hassan Salehi 2 , Mehrnaz Zarei 3
1 - Department of Horticultural Science, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources (GUASNR), Gorgan 49138-43464, Golestan, Iran
2 - دانشگاه شیراز
3 - Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, Iran
Keywords: تنش خشکی, چمانواش بلند, آزمون Gus, ژن Uida,
Abstract :
تنشهای غیر زیستی ممکن است گیاهان را به دلیل شرایط محیطی نامناسب و یا کیفیت کم آب متاثر کنند. این تنشهای رشد و نمو گیاه را طی چرخههای رشدی تحت تاثیر قرار میدهند. به این دلیل گیاهان متحمل به خشکی ارزشمند بوده و سبز فرشها متحمل به خشکی میتوانند برای این منظور تولید شوند. این گونهها پوششی مناسبی روی سطح زمین ایجاد کرده و مزایایی مختلفی از جمله زیبایی و جلوگیری از فرسایش خاک دارند که زندگی روزانه ما را متاثر میکنند. هدف این پژوهش یافتن محیط کشت ایده ال برای القاء پینه و باززایی و به دنبال آن بیش بیان ژن P5CS1 کد کننده پرولین برای بهبود مقاومت به خشکی در چمانواش بلند بود. برای این منظور پوشش بذر حذف و سپس به صورت طولی بریده شد. این تیمار اثر قابل ملاحظهای در مقایسه با بذوری داشت که تحت این تیمار قرار نگرفته بودند. علاوه بر این راندمان باززایی در محیطهای دارای 2,4-D و بنزیل آدنین افزایش یافت. متوسط پینههای مقاوم به نشانگر گزینشگر G418 تنها 10% بود. حضور ژن P5CS1 در پینهها با استفاده از آزمون هیستوشیمیایی Gus و واکنش زنجیرهای پلیمراز با آغازگرهای اختصاصی تایید شد. بیش از 90% پینه ها قادر به بیان ژن uida بودند که این به احتمال و به طور غیر مستقیم بیان کننده القاء تحمل به خشکی در پینهها میباشد.
Barnes, R.F. 1990. Importance and problems of tall fescue. In: Kasperbauer, M.J. (ed.) Biotechnology in Tall Fescue Improvement. CRC Press, Boca Raton, pp. 1–12.
Bettany, A.J.E., Dalton, S.J., Timms, E., Manderyck, B., Dhanoa, M.S. and Morris P. 2003. Agrobacterium tumefaciens-mediated transformation of Festuca arundinacea (Schreb.) and Lolium multiflorum (Lam.). Plant Cell Report, 21:437–444.
Choudhary, N.L., Sairam, R.K. and Tyagi, A. 2005. Expression of delta1-pyrroline-5-carboxylate synthetase gene during drought in rice (Oryza sativa L.). Indian Journal of Biochemistry and Biophysics, 42: 366–370.
Cougnon, M., Baert, J., Van Waes, C. and Reheul, D. 2013. Performance and quality of tall fescue (Festuca arundinacea Schreb.) and perennial ryegrass (Lolium perenne L.) and mixtures of both species grown with or without white clover (Trifolium repens L.) under cutting management. Grass and Forage Science. 69: 666–677.
Delauney, A.J. and Verma, D.P.S. 1993. Proline biosynthesis and osmoregulation in plants. Plant Journal, 4: 215-223.
Dong, S. and Qu, R. 2005. High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Science 168: 1453–1458.
Fariaszewska, A., Aper, J., Huylenbroeck, J. V., Baert, J. and Riek, J.D. 2016. Mild drought stress-induced changes in yield, physiological processes and chemical composition in Festuca, Lolium and Festulolium. Journal of Agronomy and Crop Science, 203: 103-116.
Foyer, C.H., Descourvierse, P. and Kunert, K.J. 1994. Protection against oxygen radicals: an important defense mechanism studied in transgenic plants. Plant Cell and Environment, 17: 507–23.
Gao, C., Long, D., Lenk, I. and Nielsen, K.K. 2008. Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment. Plant Cell Reports, 27: 1601–1609.
Ha, S.B., Wu, F.S. and Thorne, T.K. 1992. Transgenic turf-type tall fescue (Festuca arundinacea Schreb.) plants regenerated from protoplasts. Plant Cell Reports, 11: 601– 604.
Haudecoeur, E., Planamente, S., Ciroum A., Tannièresm M., Shelp, B.J., Moréra, S. and Faure, D. 2009. Proline antagonizes GABA-induced quenching of quorum-sensing in Agrobacterium tumefaciens. PNAS, 106: 14587–14592.
Hu, C.A.A., Delauney, A.J. and Verma, D.P.S. 1992. A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. PNAS, 89: 9354-9358.
Jefferson, R.A. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reports, 5:387–405.
Kumar, V., Shriram, V., Kavi Kishor, P.B., Jawali, M. and Shitole, M.G. 2010. Enhanced proline accumulation and salt stress tolerance of transgenic indica rice by over-expressing P5CSF129A gene. Plant Biotechnology Reports, 4:37–48.
Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15:473-497.
Pawłowicz, I., Rapacz, M., Perlikowski, D., Gondek, K. and Kosmala, A. 2017. Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species. Journal of Genetics, 58:421-435.
Saradhi, P., Alia, P., Arora, S. and Prasad, K.V. 1995. Proline accumulates in plants exposed to UV radiation and protects them against UV induced peroxidation. Biochemistry Biophysics Research Communication, 209:1–5.
Sarmast, M.K. 2016. Genetic transformation and somaclonal variation in conifers- a review. Plant Biotechnology Reports, 10: 309-325.
Sarmast, M.K., Salehi, H. and Niazi, A. 2015. Biochemical differences underlie varying drought tolerance in four Festuca arundinacea Schreb. genotypes subjected to short water scarcity. Acta Physiologia Plantarum, 37: 192
Savouré, A., Jaoua, S., Hua, X.J., Ardiles, W., van Montagu, M. and Verbruggen, N. 1995. Isolation, characterization, and chromosomal location of a gene encoding the delta 1-pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Letter, 372: 13–19.
Schat, H. 1997. Heavy metal-induced accumulation of free proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiologia Plantarum,101: 477–482.
Siripornadulsil, S., Traina, S., Verma, D.P.S. and Sayre, R.T.S. 2002. Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. The Plant Cell, 14: 2837–2847.
Szabados, L. and Savoure, A. 2009. Proline: A multifunctional amino acid cell. Trends in Plant Science, 15: 89-97
Verbruggen, N. and Hermans, C. 2008. Proline accumulation in plants: A review. Amino Acids, 35: 753–759.
Yang, Z., Miao, Y., Yu, J., Liu, J. and Huang, B. 2014. Differential growth and physiological responses to heat stress between two annual and two perennial cool-season turfgrasses. Scientia Horticulturea, 170: 75–81.
Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi-Shinozaki, K., Wada, K., Harada, Y. and Shinozaki, K. 1995. Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant Journal, 7: 751-760.
Zhao, J., Zhi, D., Xue, Z., Liu, H. and Xia, G. 2007. Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis. Journal of Plant Physiology, 164: 1377-1383.
Zhuang, L., Wang, J. and Huang, B. 2017. Drought inhibition of tillering in Festuca arundinacea associated with axillary bud development and strigolactone signaling. Environmental and Experimental Botany, 142: 15–23.