A High-Performance Electroosmotic Micromixer: How Sidewall Obstacles Influence Design and Simulation
Subject Areas : Journal of Optoelectronical Nanostructures
1 - Department of physics, Faculty of physics,Hadishahr Branch, Islamic Azad University, Hadishahr, Iran.
Keywords: Electroosmotic, Electric field, Microfluidics, Nanofluidic, Micromixer,
Abstract :
Electrokinetic flow is a unique class of electric body force-driven flow or flow subjected to electric body force governed by electric field. Effective micromixing of fluids that generate one of the basic operations in microfluidic devices can facilitate a broad variety of applications ranging from biochemical reaction to medical diagnostics. Electro-osmotic micromixers represent an active class of micromixers that utilize alternating current (AC) on electrodes. In this work, an electroosmosis-based micromixer has been designed to mix two distinct fluids; an electric potential is imposed across the electrodes with an operating frequency of 8 hertz and maximum value of 0.1 V. To achieve higher efficiency, the sidewalls of the micromixer are fitted with rectangular-shaped barriers. The simulation results based on this structure show that the micromixer achieves an outstanding efficiency of the order of 98%, thereby proving its vast potential in useful applications in a broad spectrum of disciplines in the areas of microfluidics, bioengineering, and biomedical sciences.
[1] Y. Gong and X. Cheng, Numerical investigation of electroosmotic mixing in a contraction–expansion microchannel, Chemical Engineering and Processing-Process Intensification, 192, (2023) 109492. https://doi.org/10.1016/j.cep.2023.109492
[2] R. Derakhshan, A. Mahboubidoust, and A. Ramiar, Design of a novel optimized microfluidic channel for CTCs separation utilizing a combination of TSAWs and DEP methods, Chemical Engineering and Processing-Process Intensification, 167, (2021) 108544. http://dx.doi.org/10.1016/j.cep.2021.108544
[3] D. Wang et al., A Novel Microfluidic Strategy for Efficient Exosome Separation via Thermally Oxidized Non-Uniform Deterministic Lateral Displacement (DLD) Arrays and Dielectrophoresis (DEP) Synergy, Biosensors, 14 (4) (2024) 174. https://doi.org/10.3390/bios14040174
[4] T. N. Adams, A. Y. Jiang, P. D. Vyas, and L. A. Flanagan, Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis, Methods, 133, (2018) 91-103. https://doi.org/10.1016/j.ymeth.2017.08.016
[5] M. Juraeva and D. J. Kang, Mixing enhancement of a passive micromixer with submerged structures, Micromachines, 13 (7), (2022) p. 1050. https://doi.org/10.3390/mi13071050
[6] T. Dehghani, F. S. Moghanlou, M. Vajdi, M. S. Asl, M. Shokouhimehr, and M. Mohammadi, Mixing enhancement through a micromixer using topology optimization, Chemical Engineering Research and Design, 161 187-196, (2020). http://dx.doi.org/10.1016/j.cherd.2020.07.008
[7] A. Shahidian and S. Tahouneh, A comprehensive overview of micromixers and micropumps in biomechanical applications, Journal of Computational & Applied Research in Mechanical Engineering (JCARME), (2025). https://doi.org/10.22061/jcarme.2025.10035.2349
[8] K. Karthikeyan and L. Sujatha, Study of permissible flow rate and mixing efficiency of the micromixer devices," International Journal of Chemical Reactor Engineering, 17(1)(2019), 20180047. http://dx.doi.org/10.1515/ijcre-2018-0047
[9] P. Gupta and S. S. Bahga, Mechanism of sinuous and varicose modes in electrokinetic instability, Physical Review E, 110 (3) (2024) 035106. http://dx.doi.org/10.1103/PhysRevE.110.035106
[10] A. Khoshnod, R. Shahsavandi, and K. Hosseinzadeh, Investigation of mixing performance in electro-osmotic micromixers through rigid baffle design and parameter optimization, Scientific Reports, 15 (1) (2025) 1-31. https://doi.org/10.1038/s41598-025-01812-7
[11] A. A. Sayad et al., A microfluidic lab-on-a-disc integrated loop mediated isothermal amplification for foodborne pathogen detection, Sensors and Actuators B: Chemical, 227, (2016) 600-609. http://dx.doi.org/10.1016/j.snb.2015.10.116
[12] S. F. Javed, M. E. Khan, Z. Yahya, M. J. Idrisi, and W. Tenna, Performance analysis of three-dimensional passive micromixers using k-means priority clustering with AHP-based sustainable design optimization, Scientific Reports, 15 (1) (2025) 1-17 https://doi.org/10.1038/s41598-025-03183-5
[13] A. Kumar, N. K. Manna, S. Sarkar, and N. Biswas, Enhancing mixing efficiency of a circular electroosmotic micromixer with cross-reciprocal electrodes, Physics of Fluids, 36 (8) (2024). http://dx.doi.org/10.1063/5.0225659
[14] A. J. Conde, I. Keraite, A. E. Ongaro, and M. Kersaudy-Kerhoas, Versatile hybrid acoustic micromixer with demonstration of circulating cell-free DNA extraction from sub-ml plasma samples, Lab on a Chip, 20 (4) (2020) 741-748. http://dx.doi.org/10.1039/C9LC01130G
[15] S. R. Bazaz, A. Sayyah, A. H. Hazeri, R. Salomon, A. A. Mehrizi, and M. E. Warkiani, Micromixer research trend of active and passive designs, Chemical Engineering Science, (2024) 120028. http://dx.doi.org/10.1016/j.ces.2024.120028
[16] M. Waqas, A. Palevicius, V. Jurenas, K. Pilkauskas, and G. Janusas, Design and Investigation of a Passive-Type Microfluidics Micromixer Integrated with an Archimedes Screw for Enhanced Mixing Performance, Micromachines, 16 (1) (2025) 82. http://dx.doi.org/10.3390/mi16010082
[17] A. Najafpour, S. Akbari, K. Hosseinzadeh, M. A. Bijarchi, A. Ranjbar, and D. Ganji, Active 3D electro-osmotic control micromixers: Effects of geometry, DC, and AC electric fields on mixing performance, International Communications in Heat and Mass Transfer, 165 (2025) 109033.http://dx.doi.org/10.1016/j.icheatmasstransfer.2025.109033
[18] E. Poorreza, Computer-Assisted Modeling and Simulation of a Dielectrophoresis-based Microseparator for Blood Cells Separation Applications, Chromatographia, (2025) 1-18. https://doi.org/10.1007/s10337-025-04385-9
[19] M. Wu, Y. Gao, A. Ghaznavi, W. Zhao, and J. Xu, AC electroosmosis micromixing on a lab-on-a-foil electric microfluidic device, Sensors and Actuators B: Chemical, 359, (2022) 131611. http://dx.doi.org/10.1016/j.snb.2022.131611
[20] A. Agarwal, A. Salahuddin, H. Wang, and M. J. Ahamed, Design and development of an efficient fluid mixing for 3D printed lab-on-a-chip, Microsystem Technologies, 26 (8) (2020) 2465-2477. https://doi.org/10.1007/s00542-020-04787-9
[21] R. H. Vafaie, M. Mehdipoor, A. Pourmand, E. Poorreza, and H. B. Ghavifekr, An electroosmotically-driven micromixer modified for high miniaturized microchannels using surface micromachining, Biotechnology and Bioprocess Engineering, 18 (2013) 594-605 https://doi.org/10.1007/s12257-012-0431-5 .
[22] X. Niu and Y.-K. Lee, Efficient spatial-temporal chaotic mixing in microchannels, Journal of Micromechanics and microengineering, 13 (3) (2003) 454. http://dx.doi.org/10.1088/0960-1317/13/3/316
[23] H. Chen, Y. Zhang, I. Mezic, C. Meinhart, and L. Petzold, Numerical simulation of an electroosmotic micromixer, in ASME International Mechanical Engineering Congress and Exposition, 37165 (2003) 653-658.
[24] N. J. Ghahfarokhi, M. Bayareh, A. A. Nadooshan, and S. Azadi, Mixing enhancement in electroosmotic micromixers, Journal of Thermal Engineering, 7 (2) (2021) 47-57. http://dx.doi.org/10.18186/thermal.867134
[25] M. Nazari, P.-Y. A. Chuang, J. A. Esfahani, and S. Rashidi, A comprehensive geometrical study on an induced-charge electrokinetic micromixer equipped with electrically conductive plates, International Journal of Heat and Mass Transfer, 146 (2020) 118892 http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.118892.