Design and Simulation of a High-Performance Electroosmotic Micromixer with Sidewall Obstacles
Subject Areas : Journal of Optoelectronical NanostructuresElnaz Poorreza 1 , Noushin Dadashzadeh 2 *
1 - Departement of Electrical engineering, Aras Branch, Islamic Azad University, Jolfa, Iran
2 - Department of physics, Faculty of physics,Hadishahr Branch, Islamic Azad University, Hadishahr, Iran.
Keywords: Electroosmotic, Electric field, Microfluidics, Nanofluidic, Micromixer,
Abstract :
Electro-osmotic micromixers represent an active class of micromixers that utilize alternating current (AC) on electrodes. In this work, an electroosmosis-based micromixer has been designed to mix two distinct fluids; an electric potential is imposed across the electrodes with an operating frequency of 8 hertz and maximum value of 0.1 V. To achieve higher efficiency, the sidewalls of the micromixer are fitted with rectangular-shaped barriers. The simulation results based on this structure show that the micromixer achieves an outstanding efficiency of the order of 98%, thereby proving its vast potential in useful applications in a broad spectrum of disciplines in the areas of microfluidics, bioengineering, and biomedical sciences. The influence of manipulating the frequency and potential on the electrodes on the efficacy of mixing has been investigated and the results presented accordingly
[1] Y. Gong and X. Cheng, Numerical investigation of electroosmotic mixing in a contraction–expansion microchannel, Chemical Engineering and Processing-Process Intensification, 192, (2023) 109492. https://doi.org/10.1016/j.cep.2023.109492
[2] R. Derakhshan, A. Mahboubidoust, and A. Ramiar, Design of a novel optimized microfluidic channel for CTCs separation utilizing a combination of TSAWs and DEP methods, Chemical Engineering and Processing-Process Intensification, 167, (2021) 108544. http://dx.doi.org/10.1016/j.cep.2021.108544
[3] D. Wang et al., A Novel Microfluidic Strategy for Efficient Exosome Separation via Thermally Oxidized Non-Uniform Deterministic Lateral Displacement (DLD) Arrays and Dielectrophoresis (DEP) Synergy, Biosensors, 14 (4) (2024) 174. https://doi.org/10.3390/bios14040174
[4] T. N. Adams, A. Y. Jiang, P. D. Vyas, and L. A. Flanagan, Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis, Methods, 133, (2018) 91-103. https://doi.org/10.1016/j.ymeth.2017.08.016
[5] M. Juraeva and D. J. Kang, Mixing enhancement of a passive micromixer with submerged structures, Micromachines, 13 (7), (2022) p. 1050. https://doi.org/10.3390/mi13071050
[6] T. Dehghani, F. S. Moghanlou, M. Vajdi, M. S. Asl, M. Shokouhimehr, and M. Mohammadi, Mixing enhancement through a micromixer using topology optimization, Chemical Engineering Research and Design, 161 187-196, (2020). http://dx.doi.org/10.1016/j.cherd.2020.07.008
[7] A. Shahidian and S. Tahouneh, A comprehensive overview of micromixers and micropumps in biomechanical applications, Journal of Computational & Applied Research in Mechanical Engineering (JCARME), (2025). https://doi.org/10.22061/jcarme.2025.10035.2349
[8] K. Karthikeyan and L. Sujatha, Study of permissible flow rate and mixing efficiency of the micromixer devices," International Journal of Chemical Reactor Engineering, 17(1)(2019), 20180047. http://dx.doi.org/10.1515/ijcre-2018-0047
[9] P. Gupta and S. S. Bahga, Mechanism of sinuous and varicose modes in electrokinetic instability, Physical Review E, 110 (3) (2024) 035106. http://dx.doi.org/10.1103/PhysRevE.110.035106
[10] A. Khoshnod, R. Shahsavandi, and K. Hosseinzadeh, Investigation of mixing performance in electro-osmotic micromixers through rigid baffle design and parameter optimization, Scientific Reports, 15 (1) (2025) 1-31. https://doi.org/10.1038/s41598-025-01812-7
[11] A. A. Sayad et al., A microfluidic lab-on-a-disc integrated loop mediated isothermal amplification for foodborne pathogen detection, Sensors and Actuators B: Chemical, 227, (2016) 600-609. http://dx.doi.org/10.1016/j.snb.2015.10.116
[12] S. F. Javed, M. E. Khan, Z. Yahya, M. J. Idrisi, and W. Tenna, Performance analysis of three-dimensional passive micromixers using k-means priority clustering with AHP-based sustainable design optimization, Scientific Reports, 15 (1) (2025) 1-17 https://doi.org/10.1038/s41598-025-03183-5
[13] A. Kumar, N. K. Manna, S. Sarkar, and N. Biswas, Enhancing mixing efficiency of a circular electroosmotic micromixer with cross-reciprocal electrodes, Physics of Fluids, 36 (8) (2024). http://dx.doi.org/10.1063/5.0225659
[14] A. J. Conde, I. Keraite, A. E. Ongaro, and M. Kersaudy-Kerhoas, Versatile hybrid acoustic micromixer with demonstration of circulating cell-free DNA extraction from sub-ml plasma samples, Lab on a Chip, 20 (4) (2020) 741-748. http://dx.doi.org/10.1039/C9LC01130G
[15] S. R. Bazaz, A. Sayyah, A. H. Hazeri, R. Salomon, A. A. Mehrizi, and M. E. Warkiani, Micromixer research trend of active and passive designs, Chemical Engineering Science, (2024) 120028. http://dx.doi.org/10.1016/j.ces.2024.120028
[16] M. Waqas, A. Palevicius, V. Jurenas, K. Pilkauskas, and G. Janusas, Design and Investigation of a Passive-Type Microfluidics Micromixer Integrated with an Archimedes Screw for Enhanced Mixing Performance, Micromachines, 16 (1) (2025) 82. http://dx.doi.org/10.3390/mi16010082
[17] A. Najafpour, S. Akbari, K. Hosseinzadeh, M. A. Bijarchi, A. Ranjbar, and D. Ganji, Active 3D electro-osmotic control micromixers: Effects of geometry, DC, and AC electric fields on mixing performance, International Communications in Heat and Mass Transfer, 165 (2025) 109033.http://dx.doi.org/10.1016/j.icheatmasstransfer.2025.109033
[18] E. Poorreza, Computer-Assisted Modeling and Simulation of a Dielectrophoresis-based Microseparator for Blood Cells Separation Applications, Chromatographia, (2025) 1-18. https://doi.org/10.1007/s10337-025-04385-9
[19] M. Wu, Y. Gao, A. Ghaznavi, W. Zhao, and J. Xu, AC electroosmosis micromixing on a lab-on-a-foil electric microfluidic device, Sensors and Actuators B: Chemical, 359, (2022) 131611. http://dx.doi.org/10.1016/j.snb.2022.131611
[20] A. Agarwal, A. Salahuddin, H. Wang, and M. J. Ahamed, Design and development of an efficient fluid mixing for 3D printed lab-on-a-chip, Microsystem Technologies, 26 (8) (2020) 2465-2477. https://doi.org/10.1007/s00542-020-04787-9
[21] R. H. Vafaie, M. Mehdipoor, A. Pourmand, E. Poorreza, and H. B. Ghavifekr, An electroosmotically-driven micromixer modified for high miniaturized microchannels using surface micromachining, Biotechnology and Bioprocess Engineering, 18 (2013) 594-605 https://doi.org/10.1007/s12257-012-0431-5 .
[22] X. Niu and Y.-K. Lee, Efficient spatial-temporal chaotic mixing in microchannels, Journal of Micromechanics and microengineering, 13 (3) (2003) 454. http://dx.doi.org/10.1088/0960-1317/13/3/316
[23] H. Chen, Y. Zhang, I. Mezic, C. Meinhart, and L. Petzold, Numerical simulation of an electroosmotic micromixer, in ASME International Mechanical Engineering Congress and Exposition, 37165 (2003) 653-658.
[24] N. J. Ghahfarokhi, M. Bayareh, A. A. Nadooshan, and S. Azadi, Mixing enhancement in electroosmotic micromixers, Journal of Thermal Engineering, 7 (2) (2021) 47-57. http://dx.doi.org/10.18186/thermal.867134
[25] M. Nazari, P.-Y. A. Chuang, J. A. Esfahani, and S. Rashidi, A comprehensive geometrical study on an induced-charge electrokinetic micromixer equipped with electrically conductive plates, International Journal of Heat and Mass Transfer, 146 (2020) 118892 http://dx.doi.org/10.1016/j.ijheatmasstransfer.2019.118892.