Calculation of the energy eigenvalue and linear refractive index changes and intersubband optical absorption coefficients in a quantum box with limited potential.
Heydar Izadneshan
1
(
Scientific-Practical Materials Research Centre of the National Academy of Sciences of Belarus
)
Ghahreman Soloki Nejad
2
(
عضو هیات علمی دانشگاه آزاد اسلامی واحد مرودشت
)
3
(
1 Department of Physics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
)
Keywords: quantum box, energy eigenvalue, nonlinear and linear optical properties, ,
Abstract :
In this project, both the energy of the quantum box and the refractive index changes are calculated, then the linear refractive index changes of the compact density are obtained by using the matrix method. Numerical results GaAs/AlxGa1xAs are presented for a normal quantum box. The energy change system and the first-order linear refractive index changes depending on the optical properties of GaAs / AlxGa1xAs are investigated. Our results show that changes in light intensity and structural parameters such as box size and stoichiometric ratio have a large effect on energy and refractive index changes. The behavior of both The changes of nonlinear, linear and third-order of absorption coefficient as a function of photon energy and optical intensity are similar to quantum wells. The increasing of absorber coefficient in visible and infrared region can use in very optical devices such as Solar cells and photo diodes based on quantum dots.
[1] M.A. Reed, Sci. Am. 268 (1993) 118.
[2] N. Kristaedter, et al., Appl. Phys. Lett. 69 (1996) 1226.
[3] E. Leobandung, L. Guo, S.Y. Chou, Appl. Phys. Lett. 67 (1995) 2338.
[4] K.K. Likharev, IBM J. Res. Dev. 32 (1998) 1444.
[5] D. Loss, D.P. Divicenzo, Phys. Rev. A 57 (1998) 120.
[6] K. Imamura, et al., Jpn. J. Appl. Phys. 34 (1995) L1445.
[7] C.S. Lent, et al., Nanotechnology 4 (1993) 49.
[8] X. Jiang, S.S. Li, M.Z. Tidrow, Physica E 5 (1999) 27.
[9] L. Esaki, R. Tsu, IBM J. Res. Dev. 14 (1970) 61.
[10] L. Zhang, H.J. Xie, Phys. Rev. B 68 (2003) 235315.
[11] I ˙. Karabulut, U ¨ . Atav, H. S -afak, Phys. Rev. B 72 (2005) 207301.
[12] I ˙. Karabulut, H. S -afak, M. Tomak, Solid State Commun 135 (2005)735.
[13] I ˙. Karabulut, H. S -afak, Physica B 368 (2005) 82.
[14] M.K. Gurnick, T.A. DeTemple, IEEE J. Quantum Elect. 19 (1983)791.
[15] M.M. Fejer, et al., Phys. Rev. Lett. 62 (1989) 1041.
[16] T. Takagahara, Phys. Rev. B 36 (1987) 9293.
[17] S. Sauvage, et al., Phys. Rev. B 59 (1999) 9830.
[18] T. Brunhes, et al., Phys. Rev. B 61 (2000) 5562.
[19] Y. Kan, et al., IEEE J. Quantum Elect. 23 (1987) 2167.
[20] D. Ahn, S.L. Chuang, IEEE J. Quantum Elect. 23 (1987) 2196.
[21] S.L. Chuang, D. Ahn, J. Appl. Phys. 65 (1989) 2822.
[22] J.J. Shi, S.H. Pan, Superlattice Microstruct. 17 (1995) 91.
[23] K.J. Kuhn, et al., J. Appl. Phys. 70 (1991) 5010.
[24] I ˙. Karabulut, S. U ¨ nlu ¨ , H. S -afak, Phys. Stat. Sol. B 242 (2005) 2902.
[25] Zekavat, M.A., M. Sabaeian, and G. Solookinejad, journal of Optoelectronical Nanostructure 6 (3) 81-92 2021.
[26] Rana,M., et al.,Inorganic Chemistry Communication 112 (2020) 107723
[27] H. Izadneshan, V. F.Gremenok, “Influence of thickness on the structural properties of annealed In2S3
thin films deposited by thermal evaporation”, Problems of physics, mathematics and engineering. T. 18, № 1
S. 21(2014) 25. http://mi.mathnet.ru/eng/pfmt283