High-Performance Dual-Wavelength All-Optical Reflective Semiconductor Optical Amplifier Utilizing Solution-Processed Quantum Dots
Subject Areas : Journal of Optoelectronical NanostructuresHamed Ghatei Khiabani Azar 1 , Samiye Matloub 2 * , Hamed Baghban 3
1 - Quantum and Photonic Research Lab., Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
2 - Quantum and Photonic Research Lab., Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
3 - Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
Keywords: All-optical signal processing, Dual-wavelength, Gain recovery, Optical pumping, Solution-processed quantum dots, Quantum dot reflective semiconductor optical amplifier (QD-RSOA) ,
Abstract :
This study introduces a dual-wavelength all-optical quantum dot reflective semiconductor optical amplifier (QD-RSOA), emphasizing its advanced performance and versatility in modern optical communication systems. The proposed QD-RSOA leverages solution-processed InAs/AlAs quantum dots and operates at 1.31 μm and 1.55 μm wavelengths, enabling simultaneous or independent amplification of input signals. Utilizing optical pumping for carrier population inversion, the QD-RSOA eliminates the need for electrical carrier injection, significantly enhancing its gain recovery speed and operational efficiency. The reflective architecture further improves carrier replenishment, resulting in superior modulation depth, broader gain bandwidth, and enhanced spectral response compared to optically pumped QD-SOAs. The dual-wavelength capability of the QD-RSOA is particularly advantageous for applications such as wavelength-division multiplexing (WDM) and all-optical signal processing, where high-speed and efficient signal amplification is crucial. The device’s architecture allows for seamless integration into multi-channel systems, supporting high-performance and cost-effective optical networks. Numerical simulations highlight the QD-RSOA’s exceptional gain characteristics and operational stability, demonstrating its ability to outperform traditional QD-SOAs in terms of amplification efficiency and versatility. By combining the benefits of dual-wavelength operation, optical pumping, and solution-processed quantum dot technology, the QD-RSOA represents a significant advancement in optical amplifier design. These findings pave the way for its deployment in advanced photonic networks, addressing the growing demand for high-speed, multi-channel communication systems.
[1] M. Sugawara, T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb s-1and a new scheme of 3R regenerators,” Measurement Science and Technology, vol. 13, no. 11, pp. 1683–1691, Oct. 2002, doi: 10.1088/0957-0233/13/11/304.
[2] Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast All-Optical processor based on Quantum-Dot semiconductor optical amplifiers,” IEEE Journal of Quantum Electronics, vol. 45, no. 1, pp. 34–41, Nov. 2008, doi: 10.1109/jqe.2008.2003497.
[3] F. S. Nahaei, A. Rostami, and S. Matloub, “Selective band amplification in ultra-broadband superimposed quantum dot reflective semiconductor optical amplifiers,” Applied Optics, vol. 61, no. 15, p. 4509, May 2022, doi: 10.1364/ao.427496.
[4] J. Gomis et al., “Ultrafast Gain Recovery in Quantum Dot based Semiconductor Optical Amplifiers,” Optica Publishing Group, p. 1, Jun. 2007, doi: 10.1109/cleoe-iqec.2007.4386291.
[5] E. A. Viktorov et al., “Recovery time scales in quantum dot devices,” Eur. Conf. Lasers Electro-Optics, Optica Publishing Group, p. 1, Jun. 2009, doi: 10.1109/cleoe-eqec.2009.5191460.
[6] C. Meuer et al., “Static gain saturation in quantum dot semiconductor optical amplifiers,” Optics Express, vol. 16, no. 11, p. 8269, May 2008, doi: 10.1364/oe.16.008269.
[7] V. Uskov, T. W. Berg, and J. Mork, “Theory of Pulse-Train amplification without patterning effects in Quantum-Dot semiconductor optical Amplifiers,” IEEE Journal of Quantum Electronics, vol. 40, no. 3, pp. 306–320, Mar. 2004, doi: 10.1109/jqe.2003.823032.
[8] S. M. Izadyar, M. Razaghi, and A. Hassanzadeh, “Quantum dot semiconductor optical amplifier: role of second excited state on ultrahigh bit-rate signal processing,” Applied Optics, vol. 56, no. 12, p. 3599, Apr. 2017, doi: 10.1364/ao.56.003599.
[9] H. A. Yazbeck, V. V. Belyaev, I. M. Tkachenko, and M. M. Hamze, “Multi-electrode quantum-dot semiconductor optical amplifier as an intensity modulator of signals in optical communication systems,” Journal of Physics Conference Series, vol. 1560, no. 1, p. 012021, Jun. 2020, doi: 10.1088/1742-6596/1560/1/012021.
[10] J.-L. Xiao and Y.-Z. Huang, “Numerical analysis of gain saturation, noise figure, and carrier distribution for Quantum-Dot Semiconductor-Optical amplifiers,” IEEE Journal of Quantum Electronics, vol. 44, no. 5, pp. 448–455, Mar. 2008, doi: 10.1109/jqe.2007.916683.
[11] T. W. Berg and J. Mork, “Saturation and noise properties of quantum-dot optical amplifiers,” IEEE Journal of Quantum Electronics, vol. 40, no. 11, pp. 1527–1539, Oct. 2004, doi: 10.1109/jqe.2004.835114.
[12] L. Huang, W. Hong, and G. Jiang, “All-optical power equalization based on a two-section reflective semiconductor optical amplifier,” Optics Express, vol. 21, no. 4, p. 4598, Feb. 2013, doi: 10.1364/oe.21.004598.
[13] S. Ó. Dúill et al., “Efficient modulation cancellation usingreflective SOAs,” Optics Express, vol. 20, no. 26, p. B587, Dec. 2012, doi: 10.1364/oe.20.00b587.
[14] W. Zhan, P. Zhou, Y. Zeng, M. Mukaikubo, T. Tanemura, and Y. Nakano, “Optimization of Modulation-Canceling reflective Semiconductor Optical Amplifier for colorless WDM transmitter applications,” Jan. 15, 2017. https://opg.optica.org/jlt/abstract.cfm?uri=jlt-35-2-274
[15] J. P. Babic, A. R. Totovic, J. V. Crnjanski, M. M. Krstic, M. L. Masanovic, and D. M. Gvozdic, “Enhancement of the MQW-RSOA’s Small-Signal modulation bandwidth by inductive peaking,” Journal of Lightwave Technology, vol. 37, no. 9, pp. 1981–1989, Feb. 2019, doi: 10.1109/jlt.2019.2896914.
[16] P. G. Eliseev and V. Van Luc, “Semiconductor optical amplifiers: multifunctional possibilities, photoresponse and phase shift properties,” Pure and Applied Optics Journal of the European Optical Society Part A, vol. 4, no. 4, pp. 295–313, Jul. 1995, doi: 10.1088/0963-9659/4/4/004.
[17] M. J. Connelly, “Wideband model of a reflective tensile-strained bulk semiconductor optical amplifier,” Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE, vol. 9134, p. 91341R, May 2014, doi: 10.1117/12.2051657.
[18] C. Antonelli and A. Mecozzi, “Reduced model for the nonlinear response of reflective semiconductor optical amplifiers,” IEEE Photonics Technology Letters, vol. 25, no. 23, pp. 2243–2246, Sep. 2013, doi: 10.1109/lpt.2013.2282215.
[19] Z. Vujicic, R. P. Dionisio, A. Shahpari, N. B. Pavlovic, and A. Teixeira, “Efficient dynamic modeling of the reflective semiconductor optical amplifier,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, no. 5, pp. 1–10, Apr. 2013, doi: 10.1109/jstqe.2013.2259616.
[20] E. Zhou, X. Zhang, and D. Huang, “Analysis on dynamic characteristics of semiconductor optical amplifiers with certain facet reflection based on detailed wideband model,” Optics Express, vol. 15, no. 14, p. 9096, Jan. 2007, doi: 10.1364/oe.15.009096.
[21] C. Antonelli, A. Mecozzi, Z. Hu, and M. Santagiustina, “Analytic study of the modulation response of reflective semiconductor optical amplifiers,” Journal of Lightwave Technology, vol. 33, no. 20, pp. 4367–4376, Jul. 2015, doi: 10.1109/jlt.2015.2453232.
[22] R. Totovic, J. V. Crnjanski, M. M. Krstic, and D. M. Gvozdic, “Modeling of semiconductor optical amplifiers for optical access networks,” 2022 30th Telecommunications Forum (TELFOR), pp. 420–425, Nov. 2018, doi: 10.1109/telfor.2018.8612029.
[23] M. Mohamadzadeh, S. Matloub, and M. Faraji, “Simulation and design of dual-wavelength all-optical semiconductor optical amplifier with solution-processed quantum dots,” Optical Materials, vol. 150, p. 115230, Mar. 2024, doi: 10.1016/j.optmat.2024.115230.
[24] H. A. Yazbeck, V. V. Belyaev, I. M. Tkachenko, and M. M. Hamze, “Multi-electrode quantum-dot semiconductor optical amplifier as an intensity modulator of signals in optical communication systems,” Journal of Physics Conference Series, vol. 1560, no. 1, p. 012021, Jun. 2020, doi: 10.1088/1742-6596/1560/1/012021.
[25] J. L. Wei et al., “Wavelength reused bidirectional transmission of adaptively modulated optical OFDM signals in WDM-PONs incorporating SOA and RSOA intensity modulators,” Optics Express, vol. 18, no. 10, p. 9791, Apr. 2010, doi: 10.1364/oe.18.009791.
[26] Raja, K. Mukherjee, and J. N. Roy, “Analysis of new all optical polarization-encoded Dual SOA-based ternary NOT & XOR gate with simulation,” Photonic Network Communications, vol. 41, no. 3, pp. 242–251, May 2021, doi: 10.1007/s11107-021-00932-0.
[27] Y. Zhao, Z. Yan, P. Fu, Y. Cai, and Y. Yuan, “All-optical wavelength conversion based on dual-polarization SOAs for a 112Gbps PDM-16QAM signal using parallel dual-pump,” OSA Continuum, vol. 4, no. 4, p. 1125, Mar. 2021, doi: 10.1364/osac.415288.
[28] J. Gong et al., “All-optical wavelength conversion for mode division multiplexed superchannels,” Optics Express, vol. 24, no. 8, p. 8926, Apr. 2016, doi: 10.1364/oe.24.008926.
[29] N. Calabretta, W. Miao, K. Mekonnen, and K. Prifti, “SOA based photonic integrated WDM Cross-Connects for optical Metro-Access networks,” Applied Sciences, vol. 7, no. 9, p. 865, Aug. 2017, doi: 10.3390/app7090865.
[30] M. Virte and P. Marin-Palomo, “Integrated multi-wavelength lasers for all-optical processing of ultra-high frequency signals,” Applied Physics Letters, vol. 123, no. 18, Oct. 2023, doi: 10.1063/5.0170499.
[31] F. D. Mahad, A. S. M. Supa’at, S. M. Idrus, and D. Forsyth, “Comparative performance testing of SOA wavelength conversion techniques for future all-optical systems,” Optik, vol. 124, no. 12, pp. 1254–1259, May 2012, doi: 10.1016/j.ijleo.2012.03.002.
[32] F. Zarinetchi, S. P. Smith, and S. Ezekiel, “Stimulated Brillouin fiber-optic laser gyroscope,” Optics Letters, vol. 16, no. 4, p. 229, Feb. 1991, doi: 10.1364/ol.16.000229.
[33] M. Ajiya, M. A. Mahdi, M. H. Al-Mansoori, S. Hitam, and M. Mokhtar, “Seamless tuning range based-on available gain bandwidth in multiwavelength Brillouin fiber laser,” Optics Express, vol. 17, no. 8, p. 5944, Mar. 2009, doi: 10.1364/oe.17.005944.
[34] V. Uskov, J. McInerney, F. Adler, H. Schweizer, and M. H. Pilkuhn, “Auger carrier capture kinetics in self-assembled quantum dot structures,” Applied Physics Letters, vol. 72, no. 1, pp. 58–60, Jan. 1998, doi: 10.1063/1.120643.
[35] P. Bhattacharya, D. Klotzkin, O. Qasaimeh, W. Zhou, S. Krishna, and D. Zhu, “High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, no. 3, pp. 426–438, May 2000, doi: 10.1109/2944.865098.
[36] H. Dortaj and S. Matloub, “Design and simulation of two-color mid-infrared photoconductors based on intersubband transitions in quantum structures,” Physica E Low-dimensional Systems and Nanostructures, vol. 148, p. 115660, Jan. 2023, doi: 10.1016/j.physe.2023.115660.
[37] H. Dortaj et al., “High-speed and high-precision PbSe/PbI2 solution process mid-infrared camera,” Scientific Reports, vol. 11, no. 1, Jan. 2021, doi: 10.1038/s41598-020-80847-4.
[38] R. Debnath, O. Bakr, and E. H. Sargent, “Solution-processed colloidal quantum dot photovoltaics: A perspective,” Energy & Environmental Science, vol. 4, no. 12, p. 4870, Jan. 2011, doi: 10.1039/c1ee02279b.
[39] F. P. G. De Arquer, A. Armin, P. Meredith, and E. H. Sargent, “Solution-processed semiconductors for next-generation photodetectors,” Nature Reviews Materials, vol. 2, no. 3, Jan. 2017, doi: 10.1038/natrevmats.2016.100.
[40] Samuel, “Electrifying quantum dots for lasers,” Nature Materials, vol. 17, no. 1, pp. 9–10, Nov. 2017, doi: 10.1038/nmat5040.
[41] P. Yu et al., “Absorption Cross-Section and related optical properties of colloidal INAS quantum dots,” The Journal of Physical Chemistry B, vol. 109, no. 15, pp. 7084–7087, Mar. 2005, doi: 10.1021/jp046127i.
[42] M. Yuan, M. Liu, and E. H. Sargent, “Colloidal quantum dot solids for solution-processed solar cells,” Nature Energy, vol. 1, no. 3, Feb. 2016, doi: 10.1038/nenergy.2016.16.
[43] O. Voznyy, B. R. Sutherland, A. H. Ip, D. Zhitomirsky, and E. H. Sargent, “Engineering charge transport by heterostructuring solution-processed semiconductors,” Nature Reviews Materials, vol. 2, no. 6, May 2017, doi: 10.1038/natrevmats.2017.26.
[44] S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, “A solution-processed 1.53 μm quantum dot laser with temperature-invariant emission wavelength,” Optics Express, vol. 14, no. 8, p. 3273, Jan. 2006, doi: 10.1364/oe.14.003273.
[45] H. Uesugi, M. Kita, and T. Omata, “Synthesis of size-controlled colloidal InAs quantum dots using triphenylarsine as a stable arsenic source,” Journal of Crystal Growth, vol. 416, pp. 134–141, Feb. 2015, doi: 10.1016/j.jcrysgro.2015.01.031.
[46] M. Liu et al., “Lattice anchoring stabilizes solution-processed semiconductors,” Nature, vol. 570, no. 7759, pp. 96–101, May 2019, doi: 10.1038/s41586-019-1239-7.
[47] R. Lakowicz, Principles of fluorescence spectroscopy. 2006. doi: 10.1007/978-0-387-46312-4.
[48] Chou and A. Dennis, “Förster Resonance Energy Transfer between Quantum Dot Donors and Quantum Dot Acceptors,” Sensors, vol. 15, no. 6, pp. 13288–13325, Jun. 2015, doi: 10.3390/s150613288.
[49] F. Demangeot, D. Simeonov, A. Dussaigne, R. Butté, and N. Grandjean, “Homogeneous and inhomogeneous linewidth broadening of single polar GaN/AlN quantum dots,” Physica Status Solidi. C, Conferences and Critical Reviews/Physica Status Solidi. C, Current Topics in Solid State Physics, vol. 6, no. S2, Mar. 2009, doi: 10.1002/pssc.200880971.
[50] J. Jasieniak, L. Smith, J. Van Embden, P. Mulvaney, and M. Califano, “Re-examination of the Size-Dependent absorption properties of CDSE quantum dots,” The Journal of Physical Chemistry C, vol. 113, no. 45, pp. 19468–19474, Oct. 2009, doi: 10.1021/jp906827m.
[51] Safari, S. Matloub, and M. J. Connelly, “Accelerating gain and phase recovery in Quantum-Dot reflective Semiconductor optical Amplifier: Unraveling the influence of inhomogeneous broadening and pumping power for enhanced performance,” Optics & Laser Technology, vol. 182, p. 112089, Nov. 2024, doi: 10.1016/j.optlastec.2024.112089.
[52] Henini, “Quantum Dot Heterostructures; D. Bimberg, M. Grundmann, N.N. Ledenstov; Wiley, New York, ISBN 0 471 97388 2, £90,” Microelectronics Journal, vol. 31, no. 2, pp. 148–149, Feb. 2000, doi: 10.1016/s0026-2692(99)00093-2.
[53] Shen et al., “Low confinement factor quantum dash (QD) mode-locked Fabry-Perot (FP) laser diode for tunable pulse generation,” OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, pp. 1–3, Feb. 2008, doi: 10.1109/ofc.2008.4528481.
[54] H. Dortaj, M. Faraji, and S. Matloub, “High-speed and high-contrast two-channel all-optical modulator based on solution-processed CdSe/ZnS quantum dots,” Scientific Reports, vol. 12, no. 1, Jul. 2022, doi: 10.1038/s41598-022-17084-4.