Giant enhancement of second harmonic generation efficiency from monolayer group-VI transition metal dichalcogenides ( ) embedded in 1D photonic crystals
Subject Areas : Journal of Optoelectronical Nanostructuressamira bahrami 1 , omid bahrami 2
1 - Department of physics, Farhangian university, Tehran
2 - Department of physics, Farhangian university, Tehran
Keywords: Transition metal dichalcogenide, SH generation, transfer matrix method,
Abstract :
In this study, an effective numerical method was
used to describe NLO impacts on photonic crystal structures,
particularly 2D TMDCs and three-dimensional (3D)
materials (air and SiO2). Moreover, the amplification of the
second harmonic (SH) efficiency in one-dimensional (1D)
photonic crystals, including TMDCs, was investigated. These
photonic crystal structures comprise of air, SiO2, and TMDC
layers that are periodically arranged; however, the first two
layers have the same thickness. The transfer matrix method
was applied to calculate the SH efficiency and no-reduction
field approximation. The incident wavelength λ of 810 nm
was achieved by adjusting the thickness of the air and SiO2
layers. In addition, by choosing a specific thickness, the
harmonic waves generated in the structure interacted
constructively. The conditions were such that both the
fundamental and the SH waves lay in the edge of the band
gap, where the density of electromagnetic modes and
interaction time increased. However, density of
electromagnetic modes and interaction time interaction
enhanced the efficiency of the SH efficiency.
[1] M. ZekavatFetrat, M. Sabaeian G. Solookinejad,, The effect of ambient
temperature on the linear and nonlinear optical properties of truncated
pyramidal-shaped InAs/GaAs quantum dot ,Journal of Optoelectronical
Nanostructures (JOPN), 6 (3) (2021) 81-92.
https://doi.org/10.30495/JOPN.2021.29138.1240
[2] G. Liang, X. Yu, X. Hu, B. Qiang, C. Wang, QJ WANG, Mid-infrared
photonics and optoelectronics in 2D materials, Materials Today, 51 (2021)
294-316.
https://doi.org/10.1016/j.mattod.2021.09.021
[3] A. Granados del Águila, S. Liu, T. TH Do, Z. Lai, TH. Tran, Linearly
Polarized Luminescence of Atomically-Thin MoS2 Semiconductor
Nanocrystals, ACS Nano, 13 (11) (2019) 13006-13014.
https://doi.org/10.1021/acsnano.9b05656
[4] C. Hou, J. Deng, J. Guan, Q. Yang, Z. Yu, Y. Lu, Photoluminescence of Monolayer MoS2 Modulated by Water/O2/Laser Irradiation, Physical Chemistry Chemical Physics, 23(43) (2021) 24579-24588. https://doi.org/10.1039/D1CP03651C [5] M. Wu, Y. Xiao, Y. Zeng, Y. Zhou, X. Zeng, L. Zhang, Synthesis of two‐dimensional transition metal dichalcogenides for electronics and optoelectronics, InfoMat 3(4) (2021) 362-396 . https://doi.org/10.1002/inf2.12161 [6] W. Jin, P.-C. Yeh, N. Zaki, D. Zhang, J. T. Sadowski, A. Al- Mahboob, A. M. van Der Zande, D. A. Chenet, J. I. Dadap, I. P. Herman et al, Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy, Phys. Rev. Lett. 111(10) (2013) 106801. https://doi.org/10.1103/PhysRevLett.111.106801 [7] Z. Sun, A. Martinez, and F. WANG, Optical modulators with 2D layered materials, Nature Photonics, 10(4) (2016) 227-238. https://doi.org/ 10.1038/nphoton.2016.15
[8] L. Mennel, M. Paur, T. Mueller, Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2, APL Photonics 4(3) (2019) 034404. https://doi.org/10.1063/1.5051965 [9] Autere, A., Jussila, H., Dai, Y., Wang, Y., Lipsanen, H., & Sun, Z., Nonlinear optics with 2D layered materials, Advanced Materials, 30(24) (2018) 1705963. https://doi.org/10.1002/adma.201705963 [10] N. An, T. Tan, Z. Peng, C. Qin, Z. Yuan, L. Bi, C. Liao, Electrically Tunable Four-Wave-Mixing in Graphene Heterogeneous Fiber for Individual Gas Molecule Detection, Nano Lett., 20(9) (2020) 6473-6480. https://doi.org/10.1002/adma.201705963 [11] M. hasani, R. chegell, Electronic and Optical Properties of the Graphene and Boron Nitride Nanoribbons in Presence of the Electric Field , Journal of Optoelectronical Nanostructures (JOPN), 5(2) (2020) 49-64 . https://doi.org/ 20.1001.1.24237361.2020.5.2.5.2
[12] S. Li, Y.-C. Lin, W. Zhao, J. Wu, Z. Wang, Z. Hu, Y. Shen, D.-M. Tang, J. Wang, Q. Zhang, H. Zhu, L. Chu, W. Zhao, C. Liu, Z. Sun, T. Taniguchi, M. Osada, W. Chen, Q.-H. Xu, A. T. S. Wee, K. Suenaga, F. Ding, and G. Eda, Vapour-liquid-solid growth of monolayer MoS2 nanoribbons, Nature materials, 17 (6) (2018) 535-542. https://doi.org/ 10.1038/s41563-018-0055-z
[13] X. Yang, Z. Sun, T. Low, H. Hu, X. Guo, F. J. García de Abajo, P. Avouris, and Q. Dai, Nanomaterial-Based Plasmon-Enhanced Infrared Spectroscopy, Advanced Materials 30(20) (2018) 1704896. https://doi.org/ 10.1002/adma.201704896 [14] Z. Sun, Electrically tuned nonlinearity, Nature Photonics, 12(7) (2018) 383-385. https://doi.org/ 10.1038/s41566-018-0201-9
[15] H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, M. A. Vincenti, D. de Ceglia, C. de Angelis, Y. Lu, and D. N. Neshev, Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide, Light: Science & Applications, 6(10) (2017) e17060-e17060. https://doi.org/ 10.1038/lsa.2017.60 [16] M. Olyaee, M. Tavakoli , A. Mokhtari, Propose, Analysis and Simulation of an All Optical Full Adder Based on Plasmonic Waves using Metal-Insulator-Metal Waveguide Structure, Journal of Optoelectronical Nanostructures (JOPN), 4 (3) (2019) 95-116 . https://doi.org/ 20.1001.1.24237361.2019.4.3.7.9 [17] Q. Leng, H. Su, J. Liu, L. Zhou, K. Qin, Q. Wang, J. Fu, Enhanced second-harmonic generation in monolayer MoS2 on suspended metallic nanostructures by plasmonic resonances, Nanophotonics 10(7) (2021) 1871-1877. https://doi.org/10.1515/nanoph-2021-0030
[18] K.-I. Lin, Y.-H. Ho, S.-B. Liu, J.-J. Ciou, B.-T. Huang, C. Chen, H.-C. Chang, C.-L. Tu, and C.-H. Chen, Atom-Dependent Edge-Enhanced Second-Harmonic Generation on MoS2 Monolayers, Nano Lett. ,18(2) (2018) 793-797. https://doi.org/ 10.1021/acs.nanolett.7b04006
[19] C. T. Le, D. J. Clark, F. Ullah, V. Senthilkumar, J. I. Jang, Y. Sim, M.-J. Seong, K.-H. Chung, H. Park, and Y. S. Kim, Ann, Nonlinear optical characteristics of monolayer MoSe2, Phys. 528 (7-8) (2016) 551-559. https://doi.org/ 10.1002/andp.201600006 [20] NA. Pike, R. Pachter, Second-Order Nonlinear Optical Properties of Monolayer Transition-Metal Dichalcogenides by Computational Analysis, J. Phys. Chem. C, 125(20), 20 (2021) 11075-11084. https://doi.org/ 10.1021/acs.jpcc.1c02380 [21] H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, and W. Yao, Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides, Sci. Rep. 3 (1) (2013) 1-5. https://doi.org/ 10.1038/srep01608 [22] A. V. Pakhomov, M. Hammerschmidt, S. Burger, T. Pertsch, and F. Setzpfandt, Modeling of surface-induced second-harmonic generation from multilayer structures by transfer matrix method, Optics Express, 29(6) (2021) 9098-9122. https://doi.org/ 10.1364/OE.417066 [23] L .Peng, L. Hong, Z. Li ,Theoretical solution of second-harmonic generation in periodically poled lithium niobate and chirped periodically poled lithium niobate thin film via quasi-phase-matching, Phys. Rev. A, 104 (5) (2021), 053503.
https://doi.org/10.1103/PhysRevA.104.053503
[24] A. Gharaati , N. Miri , Z. Zareian, Investigation and Comparison of Light Propagation in Two Graded Photonic Crystal Structures, Journal of Optoelectronical Nanostructures (JOPN), 2 (1) (2017) 49-58. https://doi.org/20.1001.1.24237361.2017.2.1.6.0
[25]. Hamidi, S. M., T. Parvini, and M. M. Tehranchi, Efficient second harmonic conversion efficiency through one-dimensional coupled resonator poled nonlinear optical waveguide, Applied Physics A, 111(2) (2013) 525-529. https://doi.org/10.1007/s00339-013-7599-1
[26]. K. Sakoda, Optical Properties of Photonic Crystals, 2nd edition, Springer Science & Business Media (2004).
https://doi.org/10.1007/b138376
[27]. J.D. Joannopoulos, s.G. Johnson, J.N. Winn, R.D. Meade, Photonic crystals: molding the flow of light, Princeton University Press, Princeton, NJ (2011).
https://doi.org/10.2307/j.ctvcm4gz9
[28]. C.M. Soukoulis, Photonic crystals and light localization in the 21st century, Springer Science and Business Media, Berlin (2012).
https://doi.org/10.1007/978-94-010-0738-2
[29] http://sciencenotes.org/printable-periodic-table-chart-2015.
[30] M. K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, Journal of applied crystallography, 44 (6) (2011) 1272-1276.
https://doi.org/10.1107/S0021889811038970
[31] Y. Li, A. Chernikov, X. Zhang, A. Rigosi, H. M. Hill, A. M. van der Zande, D. A. Chenet, E.M. Shih, J. Hone, and T. F. Heinz, Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2 , Phys. Rev. B ,90 (20) (2014) 205422.
https://doi.org/10.1103/PhysRevB.90.205422 [32] G. Ghosh, Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals, Optics communications, 163(1-3) (1999) 95-102.
https://doi.org/ 10.1016/S0030-4018(99)00091-7
[33] A. Kumar, V. Kumar, A. Nautiyal, K.S. Singh, S.P. Ojha, Optical switch based on nonlinear one dimensional photonic band gap materia, Optik, 145 (2017) 473-478. https://doi.org/ 10.1016/j.ijleo.2017.07.062
[34] O. Bahrami, A. Baharvand, Nonlinear Optical Effects in One Dimensional Multi-Layer Structure Consisting of Polar Ferroelectric Called LiTaO3, Journal of Optoelectronical Nanostructures (JOPN), 6 (1) (2021) 21-34.
https://doi.org/10.30495/JOPN.2021.4539