Gorenstein homological dimensions with respect to a semi-dualizing module over group rings
Subject Areas : Statistics
1 - Department of mathematics, Gonbad Kavous University, Gonbad Kavous, IRAN.
Keywords: مدول شبه دوگانی, بعد گرنشتاین, بعد C-تصویری گرنشتاین, بعد C-تزریقی گرنشتاین,
Abstract :
Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring . It is shown that Gorenstein homological dimensions of an -RΓ module M with respect to a semi-dualizing module, are equal over R and RΓ .
[1] Araya, T. and Takahashi, R. and Yoshino, Y. (2005). Homological invariants associated to semi-dualizing bimodules, J. Math. Kyoto Univ. 45, no. 2, 287-306.
[2] Auslander, M. and Bridger, M. (1969). Stable module theory, Mem. Amer. Math. Soc., 94.
[3] Auslander, M. and Buchsbaum, D.A. (1957). Homological dimension in local rings, Trans. Amer. Math. Soc. 85,390-405.
[4] Bahlekeh, A. and Kakaie, T. (2017). Generalized Gorenstein dimension over group rings, J. Algebraic system. 5 no. 1, 53-64.
[5] Brown, K.S. (1982). Cohomology of groups, Graduate Texts in Mathematics, 37, Berlin, Heidelberg, New York, Springer.
[6] Enochs, E. and Jenda, O.M.G. (1995). Gorenstein injective and projective modules, Math. Z. 220, 611-633.
[7] Enochs, E. and Jenda, O.M.G. and Torrecillas B. (1993). Gorenstain flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan, 10, 1-9.
[8] Enochs, E.E. and Yassemi, S. (2004). Foxby equivalences and cotorsion theories relative to semi-dualizing modules, Math. Scand. 95, 33-45.
[9] Foxby, H.B. (1972). Gorenstein modules and related modules, Math. Scand. 31, 267-284.
[10] Gerko, A.A. (2001). On homological dimensions, Mat. Sb. 192, no. 8, 79-94; translation in Sb. Mat. 192 (2001), no. 6, 2517-2552.
[11] Golod, S.E. (1984). G-dimension and generalized perfect ideals, Trudy Mat. Inst. Steklov. 165, 62-66 (Russian). Algebraic geometry and its applications.
[12] Holm, H. and JØrgensen P. (2006). Semi-dualizing modules and related Gorenstein homological dimensions, J. Pure Appl. Algebra 205, 423-445.
[13] Holm, H. and White D. (2007). Foxby equivalences over associative rings, J. Math. Kyoto Univ. 47, 781-808.
[14] Lazard, D. (1969). Autour de la paltitude, Bull. Soc. Math. France. 97, 81-128.
[15] Serre, J. P. (1955). Sur la dimension homologique des anneaux at des modules noetheriens, Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, (Tokyo), Science Council of Japan, 1956, pp. 157-189.
[16] Vasconcelos, W.V. (1974). Divisor theory in module categories, North-Holland Publishing Co., Amesterdam.
[17] Wagstaff, S. (2007). Semi-dualizing modules and divisor class group, Illinois J. Math. 51, no. 1, 255-285.
[18] White, D. (2010). Gorenstein projective dimension with respect to a semidualizing module, J. Comm. Algebra 2, 111-137.
[19] Xu, J. (1996). Flat covers of modules, Lecture Notes in Mathematics, Vol. 1634, Springer.