Double skew cyclic codes over F_q + uF_q
Subject Areas : Algebra
Fateme Bakhtiyari,
1
,
, Roghaye Mohammadi Hesari
2
,
Rashid Rezaei
3
*
,
Karim Samei,
4
1 - Department of Mathematics, Malayer University, Malayer, Iran
2 - Department of Mathematics, Malayer University, Malayer, Iran
3 - Department of Mathematics, Malayer University, Malayer, Iran
4 - Department of Mathematics, Bu Ali Sina University, Hamedan Iran
Keywords: کد دوری اریب مضاعف, مجموعه ی مولد مینیمال, حلقه ی زنجیری, کد جدایی پذیر,
Abstract :
In this paper, we study the algebraic structure of double skew cyclic codes over F_q + uF_q and determine a set of generator polynomials for this family of codes. Also, we show that these codes will be classified into sixteen distinct types of submodules. Then, we introduce the separable double skew cyclic codes over F_q +uF_q and determine the minimal spanning set and dual of them. Finally, we present some examples of separable double skew cyclic codes. In this paper, we study the algebraic structure of double skew cyclic codes over F_q + uF_q and determine a set of generator polynomials for this family of codes. Also, we show that these codes will be classified into sixteen distinct types of submodules. Then, we introduce the separable double skew cyclic codes over F_q +uF_q and determine the minimal spanning set and dual of them. Finally, we present some examples of separable double skew cyclic codes.
[1] باقري س،. محمدي حصاري ر،. رضايي ح،. رضايي ر،. سامعي ک،. کدهاي دوري اريب -جمعي از طول ، مجله مدل سازي پيشرفته رياضي
[2] Abulrub T., Aydin N., & Seneviratne P., On θ-cyclic codes over ,Australasian. J. Combin, 54 (2012) 115-126.
[3] Abualrub T., Siap I., & Aydin N., -Additive cyclic code, IEEE. Trans. Inf. Theory., 60(3) (2014),1508-1514.
[4] Aydogdu I., Abualrub T., Siap I., & Aydin N., On [u]-additive codes, Int. J. Comput. Math., 92(9) (2015), 1806-1814.
[5] Borges J., Fernandez Cordoba C., & Ten Valls R., -Double cyclic codes, arXiv preprint, arXiv:1410.5604v1
[6] Borges J., Fernandez Cordoba C., & Ten Valls R., Linear and cyclic codes over direct product of chain rings, Math. Meth. Appl. Sci., (2017), 6519-6529.
[7] Boucher D., Geiselmann W., & Ulmer F., Skew-cyclic codes, Appl. Algebra Eng. Commun. Comput., 18 (2007), 379-389.
[8] Chaussade L., Loidreau P., & Ulmer F., Skew codes of prescribed distance or rank, Des. Codes Cryptogr, 50 (2009), 267-284.
[9] Dinh H.Q., Constacyclic codes of length over , J. Algebra., 324 (2010), 940-950.
[10] Gao J., Shi M., Wu T., & Fu F., On double cyclic codes over , Finite Fields Appl. 39 (2016) 233-250.
[11] Hesari R.M., Rezaei R., & Samei K., On self-dual skew cyclic codes of length over Discrete Math, in press.
[12] Jitman S., Ling S., & Udomkavanich P., Skew constacyclic codes over finite chain ring, Commun ., 6 (2012), 39-63.
[13] Mahmoudi S., & Samei K., SR-Additive codes, Bull. Korean Math. Soc., 56 (2019), 1235-1255.
[14] McDonald B.R., Finite Rings With Identity, Marcel Dekker, New York, 1974.
[15] Prange E., Cyclic Error-Correcting Codes in Two Symbols, Cambridge, MA, Tech. Rep., (1957), 57-103.