عدد اول فرد p، 2p^5گراف های نیم متقارن از مرتبه
Subject Areas : Algebraپوریا مجدآملی 1 , محمدرضا درفشه 2
1 - دانشگاه ازاد
2 - Department of Computer, Faculty of Mathematics-Statistics and Science, University of Tehran
Keywords: گراف رأس انتقالی, رده بندی گرافهای مکعبی نیم متقارن, گراف نیم متقارن, گراف یال انتقالی,
Abstract :
A simple graph is called semi-symmetric if it is regular and edge transitive but not vertex transitive. In this paper we prove that there is no connected cubic semi-symmetric graph of order 2p^5 in special case and where p is a prime number and p> 3 and p≠7. In this paper all graphs are finite and undirected and simple. The class of semi-symmetric graphs was first studied by Folkman who found several infinite families of such graphs and posed eight open problems. Folkman proved that there are no semi-symmetric graphs of order 2p or 2p^2 for any prime p.Then the authors prove that there is no connected cubic semi-symmetric graph of order 2p^3 for any prime p>3 and that for p=3 the Gray graph is the only connected cubic semi-symmetric graph of order 2p^3. Also it is proved that a connected cubic semi-symmetric graph of order 2p^3. Also it is proved that a connected cubic semi-symmetric graph of order 6p^3 exists if and only if p-1 is divisible by 3.
[1] J. Folkman, Regular line-symmetric graphs, J. Combinatorial Theory 3 (1967), 215-232.
[2] I. Z. Bouwer, An edge but not vertex transitive cubic graph, Canad. Math. Bull 11(1968), 533-535.
[3] A. Malnič, D. Marušič, and C. Wang, Cubic edge – transitive graphs of order 2p^3, Discrete Math. 274(2004), no. 1-3,187-198.
[4] Y.- Q. Feng, M. Ghasemi, and C. Wang, Cubic semisymmetric graphs of order 6p^3, Discrete Math. 310 (2010), no. 17-18, 2345-2355.
[5] M. Shahsavaran and M. R. Darafsheh, Classifying semisymmetric cubic graphs of order 20_P, Turkish J.Math.43(2019), no.6, 2755-2766.
[6] M. R. Darafsheh and M. Shahsavaran, semisymmetric cubic graphs of order 34p^3, Bull. Korean Math. Soc. 57 (2020), no. 3, 739-750.
[7]. J.H. Kwak and R. Nedela, Graphs and their coverings, Lecture Notes Series, 17,2007., 28-30.
[8] N. Biggs, Algebraic graph theory, Cambridge University Press 1993.
[9] M. Conder, A. Malnič, D. Marušič, and P. Potočnik, A cencus of semisymmetric cubic graphs on up to 768 rertices, J. Algebraic Comb.23 (2006), no 3, 255-294.
[10] M. Herzog, On finite simple groups of order divisible by three primes only, J.Algebra 10 (1968), 383-388.
[11] D. M. Goldschmidt, Automorphisms of trivalent graphs, Ann. of Math. (2) 111 (1980), no. 2, 377- 406.
[12] C. Q. Wang and T. S. Chen, Semisymmetric cubic graphs as regular covers of k_3,3 , Acta Math. Sin (Engl. Ser.) 24 (2008), no. 3, 405-416.
[13] Z. Lu, C. Wang, and M. Xu, on semisymmetric cubic graphs of order 6p^2, Sci. China Ser. A 47(2004), no. 1, 1-17.
[14] J. D. Dixon, B. Mortimer, Permutation Groups, Springer, 1996.
[15] M. Conder, Summary of all semisymmetric cubic graphs on up to 10000 vertices, https://www.math. Auckland. ac.nz/~conder/Semisymm cubic 10000. txt.