Improving the Efficiency of Automobile production lines by Using Network Data Envelopment Analysis and Modeling
Subject Areas : تحقیق در عملیاتمهدی کمیجانی 1 , Amir Gholam Abri 2 * , نقی شجاع 3 , احمد شایان نیا 4
1 - Department of industrial management, Firoozkooh branch, Islamic azad university, Firoozkooh, Iran
2 - گروه ریاضی، واحد فیروزکوه، دانشگاه آزاد اسلامی، فیروزکوه، ایران
3 - Department of mathematics, Firoozkooh branch, Islamic azad university, Firoozkooh, Iran,
4 - Department of industrial management, Firoozkooh branch, Islamic azad university, Firoozkooh, Iran,
Keywords: الگویابی, تحلیل پوششی دادههای شبکهای, کارایی, ارزیابی عملکرد, بهرهوری,
Abstract :
Improving the efficiency of production lines is of particular importance due to market demand and economic constraints. In this research, Network Data Envelopment Analysis with undesirable factors has been used as the main method to analyze automobile industry and evaluate the efficiency in 5 production lines. At first, the efficiency of the production lines is calculated.Then, the reference set as the most efficient DMUs making the models will be obtained and so,as the model, cleared which factors of inefficient unit is modeled based on the efficient unit to increase their efficiency. Finally, the necessary matters to change the amount of components are presented in the reference set. The results obtained represens that the unit of efficiency in production line E is more efficient than the other lines. The main reasons of the inefficiency in production lines are poor access rate of the defects reported to after-sales service network at the first quarter after car delivery, the access rate of customer protection, quality defects, repairs and rework, operator skill, inventory under repair and the average V1 + V2 for the supplier.
[1] Wu, D. and D.L. Olson, Supply chain risk, simulation, and vendor selection. International journal of production economics, 2008. 114(2): p. 646-655.
[2] Zhang, J. and W. Tan, Research on the performance evaluation of logistics enterprise based on the analytic hierarchy process. Energy Procedia, 2012. 14: p. 1618-1623.
[3] Kazan, H., Performance evaluation in research and development, intellectual capital, and firm infrastructure projects as intangible assets. African Journal of Business Management, 2012. 6(5): p. 1872-1882.
[4] Chen, C. and H. Yan, Network DEA model for supply chain performance evaluation. European journal of operational research, 2011. 213(1): p. 147-155.
[5] Charnes, A., W.W. Cooper, and E. Rhodes, A Data Envelopment Analysis Approach to Evaluation of the Program Follow through Experiment in US Public School Education. 1978, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group.
[6] Färe, R. and S. Grosskopf, Network DEA. Socio Econ Plan Sci 34:35–49, 2000.
[7] Cook, W.D., L. Liang, and J. Zhu, Measuring performance of two-stage network structures by DEA: a review and future perspective. Omega, 2010. 38(6): p. 423-430.
[8] Kao, C., Network data envelopment analysis. International Series in Operations Research & Management Science. DOI, 2017. 10: p. 978-3.
[9] Banker, R.D., A. Charnes, and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 1984. 30(9): p. 1078-1092.
[10] Miina, A., M. Saat, and E. Kolbre, Critical success factors of lean thinking implementation in Estonian manufacturing companies. 2012: TUT Press.
[11] Kumar, N., et al., Implementing lean manufacturing system: ISM approach. Journal of Industrial Engineering and Management (JIEM), 2013. 6(4): p. 996-1012.
[12] Gijo, E. and J. Scaria, Process improvement through Six Sigma with Beta correction: a case study of manufacturing company. The International Journal of Advanced Manufacturing Technology, 2014. 71(1-4): p. 717-730.
[13] Bagozzi, R.P., Performance and satisfaction in an industrial sales force: An examination of their antecedents and simultaneity. Journal of Marketing, 1980. 44(2): p. 65-77.
[14] Kiaei, H. and R. Kazemi Matin, Common set of weights and efficiency improvement on the basis of separation vector in two-stage network data envelopment analysis. Mathematical Sciences, 2020. 14(1): p. 53-65.
[15] lo Storto, C., Performance evaluation of social service provision in Italian major municipalities using Network Data Envelopment Analysis. Socio-Economic Planning Sciences, 2020. 71: p. 100821.
[16] Villano, R.A., et al., Measuring disaster resilience in the Philippines: evidence using network data envelopment analysis. Climate and Development, 2020. 12(1): p. 67-79.
[17] گلسفید, غ., دانشیان, and ر.م. خلیفه, کارایی متقاطع برای دادههای بازهای و کاربرد آن جهت بهبود عملکرد یک سیستم بهکمک شبیهسازی. تصمیم گیری و تحقیق در عملیات, 2021.
[18] طاهر, ف., et al., تخمین خروجیهای نامطلوب و ورودیهای مطلوب به همراه بهبود در کارایی برای واحدهای تصمیمگیری با داده های بازه ای. پژوهش های نوین در ریاضی, 2021. 7(29): p. 65-72.
[19] عباسیان, ح., ارتقاء واحدهای ناکارا (با داده های منفی) در جهت وزن های مشترک در تحلیل پوششی داده ها. Iranian Journal of Optimization, 2021. 13(3).
[20] ایرانزاده and سلیمان, کاربرد تحلیل پوششی دادهها در اندازهگیری کارآیی نسبی مراکز تلفن شهری (مطالعه موردی: مخابرات منطقه آذربایجانشرقی). مدیریت بهرهوری, 2022.
[21] خردرنجبر, et al., ارزیابی کارآئی سیستم نگهداری و تعمیر ساختمانها با استفاده از روش تحلیل پوششی دادهها. نشریه مهندسی سازه و ساخت, 2022. 8(شماره ویژه 4): p. 252-269
[22] نصراللهیان, پ., et al., بهبود مجموعه امکان تولید در تحلیل پوششی دادهها با استفاده از مقادیر بازه اطمینان. پژوهش های نوین در ریاضی, 2022.
[23] Mocholi-Arce, M., et al., Performance assessment of the Chilean water sector: A network data envelopment analysis approach. Utilities Policy, 2022. 75: p. 101350.