Results on the maximal Roman domination number in graphs
Subject Areas : StatisticsMaryam Kamalipashakolaee 1 , Hossein Abdollahzadeh Ahangar 2 , Mehran Motiee 3 , Seyed Mahmoud Sheikholeslami 4
1 - Department of Mathematics, Babol Noshirvani University of Technology, Babol, Iran
2 - Department of Mathematics, Babol Noshirvani University of Technology, Babol, Iran
3 - Department of Mathematics, Babol Noshirvani University of Technology, Babol, Iran
4 - Department of MathematicsAzarbaijan Shahid Madani UniversityTabriz-Iran
Keywords: عدد احاطهگر رومی, تابع احاطهگر رومی ماکسیمال, تابع احاطهگر رومی, عدد احاطهگر رومی ماکسیمال,
Abstract :
A Roman dominating function on a graph G is a labeling f:V(G)→{0,1,2} such that every vertex with label 0 has a neighbor with label 2. A Roman dominating function on a graph G is a labeling f:V(G)→{0,1,2} such that every vertex with label 0 has a neighbor with label 2. A maximal Roman dominating function on a graph G is a Roman dominating function f such that V_0={w ∈V(G)│f(w)=0} is not a dominating set of G. The weight of maximal Roman dominating function is the value w(f)=f(V(G))=∑_(x∈V(G))▒〖f(x).〗 The maximal Roman dominating number γ_mR (G) of a graph G equals the minimum weight of a maximal Roman dominating function on G. In this paper, we continue the study of maximal Roman domination number. First, we characterize all graphs G of order n with g(G)≥6 for which γ_mR (G) =n-2, and then, we consider this property for some graphs with girth at most 5.
[1] H. Abdollahzadeh Ahangar, A. Bahremandpour, S.M. Sheikholeslami, N.D. Soner, Z. Tahmasbzadehbaee and L. Volkman, Maximal Roman domin-ation numbers in graphs, Util. Math. 103 (2017) 245-258.
[2] H. Abdollahzadeh Ahangar, M. Chellali, D. Kuziak, and V. Samodivkin, On maximal Roman domination in graphs, Int. J. Comput. Math. 93(7) (2016) 1093-1102.
[3] H. Abdollahzadeh Ahangar, M. Chellali, D. Kuziak, and V. Samodivkin, Connected graphs with maximal Roman domination numbers one less than their order, Ars combin. 144 (2019) 207-224.
[4] E.J. Cockayne, P.M. Dreyer Jr., S.M. Hedetniemi, and S.T. Hedetniemi,On Roman domination in graphs, Discrete Math. 278 (2004)11-22.
[5] A. Hansberg, N. Jafari Rad, and L. Volkmann, Vertex and edge critical Roman domination in graphs, Util. Math. 92 (2013) 73-88.
[6] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Domination in Graphs: Advanced Topic, Marcel Dekker, Inc. New York, 1998.
[7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater (eds), Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
[8] V.R. Kulli and B. Janakiram, The maximal domination number of a graph, Graph Theory Notes ofNew York, New York Academy of Sciences XXXIII (1997), 11-13.
[9] V.R. Kulli and B. Janakiram, A note on maximal domination number of a graph, Graph Theory Notes of New York, New York Academy ofSciences XXXIII (2000), 35-36.