On quasi-Armendariz skew monoid rings
Subject Areas : StatisticsMohammad Habibi 1 * , Ahmad Moussavi 2 , Raoufeh Manaviyat 3
1 - Department of Mathematics, Tafresh University, Tafresh, Iran
2 - Faculty of Mathematical Sciences, Department of Pure Mathematics, Tarbiat Modares University, Tehran, Iran
3 - Department of Mathematics, Payame Noor University, Tehran, Iran
Keywords: حلقه های ماتریسی مثلثی, حلقه های APP, حلقه های شبه آرمنداریز, حلقه های گروهی اریب,
Abstract :
Let $R$ be a unitary ring with an endomorphism $σ$ and $F∪{0}$ be the free monoid generated by $U={u_1,…,u_t}$ with $0$ added, and $M$ be a factor of $F$ setting certain monomial in $U$ to $0$, enough so that, for some natural number $n$, $M^n=0$. In this paper, we give a sufficient condition for a ring $R$ such that the skew monoid ring $R*M$ is quasi-Armendariz (By Hirano a ring $R$ is called quasi-Armendariz if whenever $f(x)=Σa_ix^i$ and $g(x)=Σb_jx^j$ in $R[x]$ satisfy $f(x)R[x]g(x)=0$, we have $a_iRb_j=0$ for every $0leq i leq m$ and $0leq j leq n$) and provide rich classes of non-semiprime quasi-Armendariz rings. Let $R$ be a unitary ring with an endomorphism $σ$ and $F∪{0}$ be the free monoid generated by $U={u_1,…,u_t}$ with $0$ added, and $M$ be a factor of $F$ setting certain monomial in $U$ to $0$, enough so that, for some natural number $n$, $M^n=0$. In this paper, we give a sufficient condition for a ring $R$ such that the skew monoid ring $R*M$ is quasi-Armendariz (By Hirano a ring $R$ is called quasi-Armendariz if whenever $f(x)=Σa_ix^i$ and $g(x)=Σb_jx^j$ in $R[x]$ satisfy $f(x)R[x]g(x)=0$, we have $a_iRb_j=0$ for every $0leq i leq m$ and $0leq j leq n$) and provide rich classes of non-semiprime quasi-Armendariz rings.
[1] J.Chen, X. Yang b, Y.Zhou, On strongly clean matrix and triangular matrix rings, Comm. Algebra 34 (2006) 3659-3674.
[2] M. Habibi, A new class of non-semiprime quasi-Armendariz rings, StudiaScientiarumMathematicarumHungarica 51(2) (2014) 165-171.
[3] M. Habibi, A. Moussavi, Annihilator properties of skew monoid rings, Comm. Algebra 42(2) (2014) 842-852.
[4] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002) 45-52.
[5] Z. K. Liu, W. Zhang, A note on quasi-Armendariz rings, Math. J. Okayama Univ. 52 (2010) 89-95.
[6] Z. K. Liu, R. Y. Zhao, A generalization of PP-rings and p.q.-Baer rings, Glasg. Math. J. 48(2) (2006) 217-229.
[7] A. R. Nasr-Isfahani, A. Moussavi, On weakly rigid rings, Glasg. Math. J. 51(3) (2009) 425-440.
[8] B. Stenstr m, Rings of Quotients, Springer, Berlin, 1975.
[9] H. Tominaga, On s-unital rings, Math. J. Okay. Univ. 18 (1976) 117-134.