Mechanical and Corrosion Properties of Graphene Oxide-Copper Nano-composites produced by the accumulative Roll Bonding (ARB) method
Subject Areas : journal of New MaterialsLaleh Ghalandari 1 * , Parisa Tajbakhsh 2
1 - Department of Materials Science and Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
2 - Department of Materials Science and Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran
Keywords: mechanical properties, accumulative roll bonding, corrosion behavior, copper / graphene oxide composites, ultra-fine grain microstructure,
Abstract :
The Copper/Graphene oxide composite sheets, containing 2% graphene oxide were made by accumulative roll bonding method in four steps for the first time. The process was performed at ambient temperature and non-lubricating conditions. The initial materials were commercial pure copper and graphene oxide.
In order to evaluation the produced composites the mechanical, microstructural, electrical and corrosion behavior of the produced composites were investigated at different ARB cycles.
The mechanical properties of the composite were investigated by tensile, micro hardness and fractography tests before and at different stages of the process.
To observe structural changes a field emission scanning electron microscopy (FESEM) equipped with an EDX spectrometer were used.
The results have shown that no new phase has been produced in this composite, and only the main peak of the copper, graphene and oxygen elements could be observed in the EDX patterns.The observation of microstructure showed that in lower cycles, graphene oxide powders were more agglomerated and had non-uniform distribution and in the final stages the powders distribution was more uniformly.
The fractography results revealed ductile fracture of the produced composites.
The corrosion resistance and electrical conductivity of composites increased compared to pure copper
[1] V. Yousefi Mehr, A. Rezaeian, M.R. Toroghinejad, Application of accumulative roll bonding and anodizing process to produce Al–Cu–Al2O3 composite, Mater. Des. 70 (2015) 53–59. doi:https://doi.org/10.1016/j.matdes.2014.12.042.
[2] R.Z. Valiev, R.K. Islamgaliev, I. V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. (2000). doi:10.1016/S0079-6425(99)00007-9.
[3] G. Sakai, K. Nakamura, Z. Horita, T.G. Langdon, Developing high-pressure torsion for use with bulk samples, Mater. Sci. Eng. A. (2005).
doi:10.1016/j.msea.2005.06.049.
[4] L. Ghalandari, M.M. Moshksar,
High-strength and high-conductive Cu/Ag multilayer produced by ARB, J. Alloys Compd. 506 (2010). doi:10.1016/j.jallcom.2010.06.172.
[5] L. Ghalandari, M.M.M. Mahdavian, M. Reihanian, M. Mahmoudiniya, Production of Al/Sn multilayer composite by accumulative roll bonding (ARB): A study of microstructure and mechanical properties, Mater. Sci. Eng. A. 661 (2016) 179–186. doi:10.1016/j.msea.2016.02.070.
[6] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding proces, Scr. Mater. 40 (1999) 795–800.
[7] L. Chen, Q. Shi, D. Chen, S. Zhou, J. Wang, X. Luo, Research of textures of ultrafine grains pure copper produced by accumulative roll-bonding, Mater. Sci. Eng. A. 508 (2009) 37–42. doi:10.1016/j.msea.2008.12.018.
[8] Y. Ding, J. Jiang, A. Shan, Microstructures and mechanical properties of commercial purity iron processed by asymmetric rolling, Mater. Sci. Eng. A. 509 (2009) 76–80. doi:10.1016/j.msea.2009.01.062.
[9] A. Fattah-alhosseini, A. Reza Ansari, Y. Mazaheri, M. Karimi, M. Haghshenas, An Investigation of mechanical properties in accumulative roll bonded nano-grained pure titanium, Mater. Sci. Eng. A. 688 (2017) 218–224. doi:10.1016/j.msea.2017.02.013.
[10] L. Ghalandari, M.M. Mahdavian, M. Reihanian, Microstructure evolution and mechanical properties of Cu/Zn multilayer processed by accumulative roll bonding (ARB), Mater. Sci. Eng. A. 593 (2014) 145–152. doi:10.1016/j.msea.2013.11.026.
[11] A. Mashhadi, A. Atrian, L. Ghalandari, Mechanical and microstructural investigation of Zn/Sn multilayered composites fabricated by accumulative roll bonding (ARB) process, J. Alloys Compd. 727 (2017) 1314–1323. doi:10.1016/j.jallcom.2017.08.241.
[12] M.M. Mahdavian, L. Ghalandari, M. Reihanian, Accumulative roll bonding of multilayered Cu/Zn/Al: An evaluation of microstructure and mechanical properties, Mater. Sci. Eng. A. 579 (2013) 99–107. doi:10.1016/j.msea.2013.05.002.
[13] A. Melaibari, A. Fathy, M. Mansouri, M.A. Eltaher, Experimental and numerical investigation on strengthening mechanisms of nanostructured Al-SiC composites, J. Alloys Compd. 774 (2019) 1123–1132.
doi:10.1016/j.jallcom.2018.10.007.
[14] X.Y. Yang, Q.S. Mei, X.M. Mei, Y. Ma, F. Chen, L. Wan, J.Y. Li, Materials Science & Engineering A Al matrix composites reinforced by high volume fraction of TiAl 3 fabricated through combined accumulative roll-bonding processes, 754 (2019) 309–317.
[15] F. Ferreira, I. Ferreira, E. Camacho, F. Lopes, A.C. Marques, A. Velhinho, Graphene oxide-reinforced aluminium-matrix nanostructured composites fabricated by accumulative roll bonding, Compos. Part B Eng. 164 (2019) 265–271. doi:https://doi.org/10.1016/j.compositesb.2018.11.075.
[16] W. Zheng, Y.X. Gao, X.P. Wang, H. Lu, L.F. Zeng, Q.F. Fang, High strength and damping capacity of LLZNO/Al composites fabricated by accumulative roll bonding, Mater. Sci. Eng. A. 689 (2017) 306–312. doi:10.1016/j.msea.2017.02.074.
[17] X. Liu, D. Wei, L. Zhuang, C. Cai, Y. Zhao, Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding, Mater. Sci. Eng. A. 642 (2015) 1–6. doi:https://doi.org/10.1016/j.msea.2015.06.032.
[18] J. Phiri, P. Gane, T.C. Maloney, General overview of graphene: Production, properties and application in polymer composites, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 215 (2017) 9–28. doi:10.1016/j.mseb.2016.10.004.
[19] Y. Li, C. Long, W. Tao, A. Li, Q. Zhang, Fractal dimensions of macroporous and hypercrosslinked polymeric adsorbents from nitrogen adsorption data, J. Chem. Eng. Data. (2010). doi:10.1021/je100010d.
[20] X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano-graphene oxide for cellular imaging and drug delivery, Nano Res. (2008). doi:10.1007/s12274-008-8021-8.
[21] X. Liu, D. Wei, L. Zhuang, C. Cai, Y. Zhao, Fabrication of high-strength graphene nanosheets/Cu composites by accumulative roll bonding, Mater. Sci. Eng. A. 642 (2015) 1–6. doi:https://doi.org/10.1016/j.msea.2015.06.032.
[22] G. Wu, Z. Yu, L. Jiang, C. Zhou, G. Deng, X. Deng, Y. Xiao, A novel method for preparing graphene nanosheets/Al composites by accumulative extrusion-bonding process, Carbon N. Y. 152 (2019) 932–945.
doi:10.1016/j.carbon.2019.06.077.
[23] M. Fattahi, M. Rostami, F. Amirkhanlu, N. Arabian, E. Ahmadi, H. Moayedi, Fabrication of aluminum TIG welding filler rods reinforced by ZrO2/reduced graphene oxide hybrid nanoparticles via accumulative roll bonding, Diam. Relat. Mater. 99 (2019) 107518. doi:https://doi.org/10.1016/j.diamond.2019.107518.
[24] J.K. Tiwari, A. Mandal, A. Rudra, D. Mukherjee, N. Sathish, Evaluation of mechanical and thermal properties of bilayer graphene reinforced aluminum matrix composite produced by hot accumulative roll bonding, J. Alloys Compd. 801 (2019) 49–59. doi:https://doi.org/10.1016/j.jallcom.2019.06.127.
[25] F. Chen, J. Ying, Y. Wang, S. Du, Z. Liu, Q. Huang, Effects of graphene content on the microstructure and properties of copper matrix composites, Carbon N. Y. 96 (2016) 836–842. doi:10.1016/j.carbon.2015.10.023.
[26] G.C.C. Yao, Q.S.S. Mei, J.Y.Y. Li, C.L.L. Li, Y. Ma, F. Chen, M. Liu, Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding, Mater. Des. 110 (2016) 124–129. doi:10.1016/j.matdes.2016.07.129.
[27] ن.ع. دانشمند سیدحمید, ذاکری محمد, محمدبیگی علی, No Titleتاثیر گرافن بر خواص مکانیکی نانوکامپوزیت مس/گرافن, فرآیندهای نوین در مهندسی مواد (مهندسی مواد مجلسی(. 9 (1994) 141–148.
[28] Graphite and precursors, Choice Rev. Online. (2001). doi:10.5860/choice.38-6194.
[29] M. Alizadeh, M.H. Paydar, Fabrication of Al/SiCP composite strips by repeated roll-bonding (RRB) process, J. Alloys Compd. 477 (2009) 811–816. doi:10.1016/j.jallcom.2008.10.151.
[30] G.C. Yao, Q.S. Mei, J.Y. Li, C.L. Li, Y. Ma, F. Chen, M. Liu, Cu/C composites with a good combination of hardness and electrical conductivity fabricated from Cu and graphite by accumulative roll-bonding, Mater. Des. 110 (2016) 124–129. doi:10.1016/J.MATDES.2016.07.129.
[31] M. Alizadeh, M. Samiei, Fabrication of nanostructured Al/Cu/Mn metallic multilayer composites by accumulative roll bonding process and investigation of their mechanical properties, Mater. Des. 56 (2014) 680–684. doi:10.1016/j.matdes.2013.11.067.
[32] M.-K. Chung, Y.-S. Choi, J.-G. Kim, Y.-M. Kim, J.-C. Lee, Effect of the number of ECAP pass time on the electrochemical properties of 1050 Al alloys, Mater. Sci. Eng. A. 366 (2004) 282–291. doi:https://doi.org/10.1016/j.msea.2003.08.056.
[33] W. Wei, K.X. Wei, Q.B. Du, Corrosion and tensile behaviors of ultra-fine grained Al–Mn alloy produced by accumulative roll bonding, Mater. Sci. Eng. A. 454–455 (2007) 536–541. doi:https://doi.org/10.1016/j.msea.2006.11.063.
[34] J. Wang, L. Guo, W. Lin, J. Chen, S. Zhang, S. Chen, T. Zhen, Y. Zhang, The effects of graphene content on the corrosion resistance, and electrical, thermal and mechanical properties of graphene/copper composites, New Carbon Mater. 34 (2019) 161–169. doi:https://doi.org/10.1016/S1872-5805(19)60009-0.
_||_